

Stephen JD Kay University of York 25/04/25 1 /

Brief Form Factor Recap

- Brief Form Factor Recap
- Simulation Conditions

- Brief Form Factor Recap
- Simulation Conditions
- Measuring Meson Form Factors through DEMP

- Brief Form Factor Recap
- Simulation Conditions
- Measuring Meson Form Factors through DEMP
- Analysis Overview/Details

- Brief Form Factor Recap
- Simulation Conditions
- Measuring Meson Form Factors through DEMP
- Analysis Overview/Details
- ePIC Projections Latest Results and Improvements

- Form factors → Momentum space distributions of partons
 Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_π/F_K

- Form factors → Momentum space distributions of partons
 - Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_π/F_K
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - \circ Access form factors by isolating σ_L at lowest possible -t

- Form factors → Momentum space distributions of partons
 - Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_π/F_K
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - \circ Access form factors by isolating σ_L at lowest possible -t
 - Conventional L-T separation not possible o low enough ϵ not accessible at the EIC
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$

- Form factors → Momentum space distributions of partons
 - Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_π/F_K
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - \circ Access form factors by isolating σ_L at lowest possible -t
 - Conventional L-T separation not possible o low enough ϵ not accessible at the EIC
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- ullet F_{π} measurement feasibility previously demonstrated

- Form factors → Momentum space distributions of partons
 - Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_π/F_K
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - \circ Access form factors by isolating σ_L at lowest possible -t
 - Conventional L-T separation not possible o low enough ϵ not accessible at the EIC
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- \bullet F_{π} measurement feasibility previously demonstrated
- Improvements with ePIC demonstrated previously
 - No 10x130 early science config previously

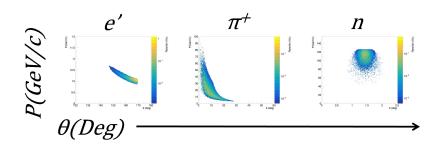
- Form factors → Momentum space distributions of partons
 - Insights into emergent hadronic mass (EHM)
- Measurements $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda/\Sigma)$ at the EIC can potentially extend the Q^2 reach of F_π/F_K
- A challenging measurement however
 - Need clean identification of exclusive reactions
 - \circ Access form factors by isolating σ_L at lowest possible -t
 - Conventional L-T separation not possible o low enough ϵ not accessible at the EIC
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- \bullet F_{π} measurement feasibility previously demonstrated
- Improvements with ePIC demonstrated previously
 - No 10x130 early science config previously
- \circ F_{κ} studies still to be done
 - Promising signs on Λ reconstruction in ZDC though

See https://doi.org/10.48550/arXiv.2412.12346

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10x130 added as new configuration
 - Assume $\int \mathcal{L} = 5 \ fb^{-1}$ in projections

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10x130 added as new configuration
 - Assume $\int \mathcal{L} = 5 \ fb^{-1}$ in projections
- Ran $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda)$, split into three Q^2 ranges
 - $\,\circ\, 3 < Q^2 < 10, \, 10 < Q^2 < 20$ and $20 < Q^2 < 35$
 - \circ Roughly ${\sim}300$ k generated per Q^2 range

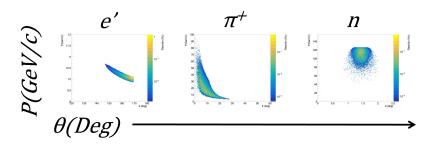

- 10 GeV e^- on 130 GeV p (10x130) is a new configuration
- New simulation, and therefore new input files, needed
- Used DEMPgen v1.2.3 to generate new files
 - 10x130 added as new configuration
 - Assume $\int \mathcal{L} = 5 \ fb^{-1}$ in projections
- Ran $p(e, e'\pi^+n)$ and $p(e, e'K^+\Lambda)$, split into three Q^2 ranges
 - \circ 3 < Q^2 < 10, 10 < Q^2 < 20 and 20 < Q^2 < 35
 - Roughly \sim 300k generated per Q^2 range
- For π , processed with high acceptance (lower divergence) beam profile
 - Only pion high acceptance analysed so far
- Submit as a request to simulation campaign (300k events total), but also ran independently
 - Used 10x130 epic-craterlake detector config
 - Plots shown are from own simulation

DEMP Kinematics - Truth Distributions

Generated 10 GeV electrons on 130 GeV protons (10x130)

DEMP Kinematics - Truth Distributions

- Generated 10 GeV electrons on 130 GeV protons (10x130)
- \bullet e' and π^+ hit the central detector, neutron in FF detectors
 - ZDC in particular critical for low -t neutrons



Beam effects not removed here.

Note, in η the ranges are $-1.15 < \eta_{e'} < -2.45$, 0 $< \eta_{\pi^+} <$ 0.9 and 4 $< \eta_{\it n} <$ 5.1.

DEMP Kinematics - Truth Distributions

- Generated 10 GeV electrons on 130 GeV protons (10x130)
- e' and π⁺ hit the central detector, neutron in FF detectors
 ZDC in particular critical for low -t neutrons
- Note that the Z scale is a rate in Hz

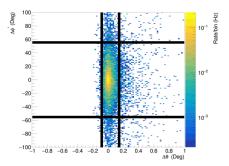
- Need to select out e', π^+ , n triple coincidence events
- To begin, require that simultaneously we have -

- Need to select out e', π^+ , n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')
 - One positively charged track in the +z direction (π^+)
 - A high energy reconstructed neutron in the ZDC
 - \bullet $E_n > 40 \ GeV$
 - $\theta_n^* < 4 \ mrad$

- Need to select out e', π^+ , n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')
 - One positively charged track in the +z direction (π^+)
 - A high energy reconstructed neutron in the ZDC
 - E_n > 40 GeV
 - \bullet $\theta_n^* <$ 4 mrad
- Cut on difference between ZDC hit and p_{Miss} track angles
 - $-0.09^{\circ} < \Delta \theta^* < 0.14^{\circ}$
 - $\bullet \ |\Delta\phi^*| < 55^\circ$

- Need to select out e', π^+ , n triple coincidence events
- To begin, require that simultaneously we have -
 - One negatively charged track in the -z direction (the e')
 - One positively charged track in the +z direction (π^+)
 - A high energy reconstructed neutron in the ZDC
 - \bullet $E_n > 40 \ GeV$
 - $\theta_n^* < 4 \ mrad$
- ullet Cut on difference between ZDC hit and p_{Miss} track angles
 - $-0.09^{\circ} < \Delta \theta^* < 0.14^{\circ}$
 - $|\Delta \phi^*| < 55^{\circ}$
- Also cut on $-t_{eXBABE} < 1.4$ and $W_{rec} > 0$
 - Using the TRECO convention for -t reconstruction methods

DEMP Analysis Overview - $\Delta \theta^*$ and $\Delta \phi^*$ Cuts

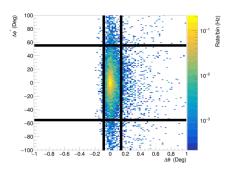

- P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, P_{Miss} vector should not correspond to a ZDC hit
 - Effectively an additional "exclusivity" constraint

DEMP Analysis Overview - $\Delta \theta^*$ and $\Delta \phi^*$ Cuts

- \circ P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, P_{Miss} vector should <u>not</u> correspond to a ZDC hit
 - Effectively an additional "exclusivity" constraint

$$ullet$$
 Select $-0.09^{\circ} < \Delta heta^* < 0.14^{\circ}$ and $-55^{\circ} < \Delta \phi^* < 55^{\circ}$

$$\quad \quad \bullet \ \Delta \theta^* = \theta^*_{\mathit{pMiss}} - \theta^*_{\mathit{ZDC}}$$

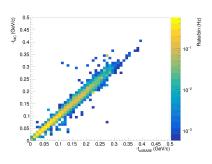


DEMP Analysis Overview - $\Delta \theta^*$ and $\Delta \phi^*$ Cuts

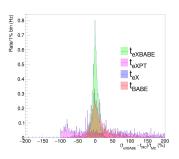
- P_{Miss} vector should correspond with hit location on the ZDC
- For a non-exclusive event, P_{Miss} vector should <u>not</u> correspond to a ZDC hit
 - Effectively an additional "exclusivity" constraint

$$ullet$$
 Select $-0.09^{\circ} < \Delta heta^* < 0.14^{\circ}$ and $-55^{\circ} < \Delta \phi^* < 55^{\circ}$

 Simulation is exclusive only, inclusive events spread over broader range



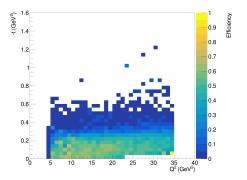
- Can reconstruct -t in multiple ways
- "Best" way for DEMP is \rightarrow -t_{eXBABE} = $(\vec{p} \vec{n}_{Corr})^2$


- Can reconstruct -t in multiple ways
- "Best" way for DEMP is \rightarrow -t_{eXBABE} = $(\vec{p} \vec{n}_{Corr})^2$
- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track

I.e. it is a neutron, so set the mass to the neutron mass. $\vec{P}_{Miss} = (\vec{e} + \vec{p}) - (\vec{e}\prime_{Rec} + \vec{\pi}_{Rec})$

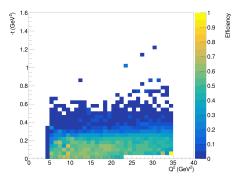
- \circ Can reconstruct -t in multiple ways
- "Best" way for DEMP is \rightarrow -t_{eXBABE} = $(\vec{p} \vec{n}_{Corr})^2$
- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track
- $-t_{eXBABE}$ correlates well with truth

- \circ Can reconstruct -t in multiple ways
- "Best" way for DEMP is \rightarrow -t_{eXBABE} = $(\vec{p} \vec{n}_{Corr})^2$
- \vec{n}_{Corr} uses \vec{P}_{Miss} , actual ZDC hit info and the exclusive nature of the reaction to "correct" the reconstructed neutron track
- $-t_{eXBABE}$ correlates well with truth
- Far better than methods using uncorrected neutron track (t_{BABE}) and methods utilising electron information (t_{eX}) and electron P_T (t_{eXPT}) info

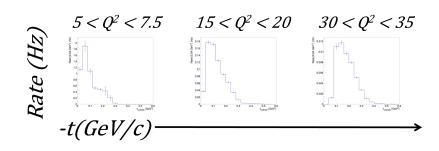

 $\sigma(eXBABE)=13.36,\ \sigma(eXPT)=83.67,\ \sigma(eX)=111.87,\ \sigma(BABE)=43.01.$ All $e'\pi^+n$ triple coincidence events

DEMP Analysis Overview - Detection Efficiency

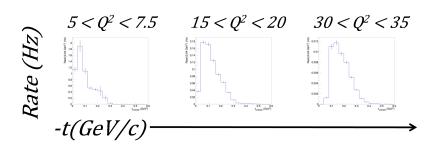
- What is the detection efficiency like for DEMP?
 - All previous cuts applied and $5 < Q^2 < 35$ required


DEMP Analysis Overview - Detection Efficiency

- What is the detection efficiency like for DEMP?
 - All previous cuts applied and $5 < Q^2 < 35$ required
- Detection efficiency is good, comparable to previous results
 - Crucially, efficiency is highest in low -t region


DEMP Analysis Overview - Detection Efficiency

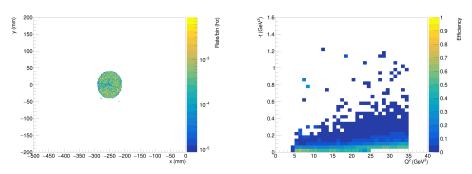
- What is the detection efficiency like for DEMP?
 - All previous cuts applied and $5 < Q^2 < 35$ required
- Detection efficiency is good, comparable to previous results
 - \bullet Crucially, efficiency is highest in low -t region
- Without B0, rapid tail off beyond -t of 0.4


DEMP Analysis Results - Q^2 , -t Binning

- After applying cuts, bin in Q^2 and -t
 - \bullet -t bins 0.04 GeV/c wide
 - Q^2 bins 2.5 GeV^2 wide below 10 GeV^2 , 5 GeV^2 above

DEMP Analysis Results - Q^2 , -t Binning

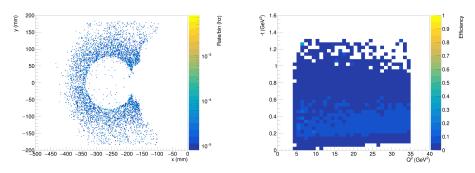
- After applying cuts, bin in Q^2 and -t
 - -t bins 0.04 GeV/c wide
 - Q^2 bins 2.5 GeV^2 wide below 10 GeV^2 , 5 GeV^2 above
- From rate per bin, extrapolate to number of events with $\int \mathcal{L} = 5 \ fb^{-1}$, project to F_{π}



DEMP Analysis Results - Commments on 5x41

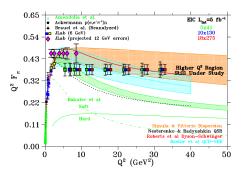
• For 5x41 events, only very low -t events hit the ZDC

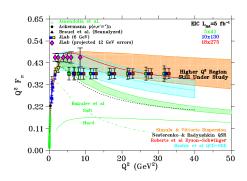
DEMP Analysis Results - Commments on 5x41


- For 5x41 events, only very low -t events hit the ZDC
- Efficiency for $-t > 0.2 \; GeV/c$ in the ZDC is very low

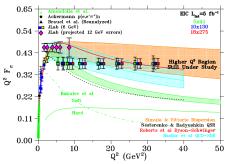
Tracks from ZDC n hits projected to Z = 10m

DEMP Analysis Results - Commments on 5x41


- For 5x41 events, only very low -t events hit the ZDC
- Efficiency for $-t > 0.2 \ GeV/c$ in the ZDC is very low
- However, many of these events recoverable from the B0


Tracks from B0 n hits projected to Z = 10m

• ePIC opens up high Q^2 regime


- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L/\sigma_T$
 - R = 0.013 014 at lowest -t from VR model

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L/\sigma_T$
 - R = 0.013 014 at lowest -t from VR model
- Uncertainties dominated by R at low Q²
- Statistical uncertainties dominate at high Q^2

- ePIC opens up high Q² regime
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L/\sigma_T$
 - R = 0.013 014 at lowest -t from VR model
- Uncertainties dominated by R at low Q²
- Statistical uncertainties dominate at high Q^2

- Even from low ∫ L in early science programme, looks promising!
- How high in Q^2 will be possible?

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters
- New URegina student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50~GeV^2$ will be a priority, for pion and kaon channels
- Also need a deuteron module in DEMPgen
 - $\, \bullet \,$ Needed for π^+/π^- ratio model validation tests

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters
- New URegina student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50~GeV^2$ will be a priority, for pion and kaon channels
- Also need a deuteron module in DEMPgen
 - $\,\circ\,$ Needed for π^+/π^- ratio model validation tests
- Will add additional QA plots to output
 - Different Q^2 methods etc
 - Don't expect to see any major changes

- Need to look at 10x250 setting
- Planning to take a closer look at B0 information too
 - Access to higher -t
 - Need to look carefully at clusters
- New URegina student, starting later in the year
 - Extending DEMPgen parametrisation to $\sim Q^2 = 50~GeV^2$ will be a priority, for pion and kaon channels
- Also need a deuteron module in DEMPgen
 - Needed for π^+/π^- ratio model validation tests
- Will add additional QA plots to output
 - Different Q² methods etc
 - Don't expect to see any major changes
- $K^+\Lambda$ channel is on the agenda for later in the year

- 10on130 pion results look good, even with low $\int \mathcal{L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5 \ \text{fb}^{-1}$
 - $\,\,$ Need further generator updates to determine how high in Q^2 is actually viable

- \circ 10on130 pion results look good, even with low $\int \mathcal{L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5~{\it fb}^{-1}$
 - \circ Need further generator updates to determine how high in Q^2 is actually viable
- Still need deuteron studies

- 10on130 pion results look good, even with low $\int \mathcal{L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5~{\it fb}^{-1}$
 - Need further generator updates to determine how high in Q^2 is actually viable
- Still need deuteron studies
- Also need to revisit $K^+\Lambda$
 - New ZDC reconstruction algorithm expected in main ePIC simulation soon
 - Λ reconstruction in ZDC looks very promising
 - Expect rapid results when it is available

- 10on130 pion results look good, even with low $\int \mathcal{L}$ expected from early physics
 - More broadly, all early running settings look viable with $\int \mathcal{L} = 5~{\it fb}^{-1}$
 - Need further generator updates to determine how high in Q^2 is actually viable
- Still need deuteron studies
- Also need to revisit $K^+\Lambda$
 - New ZDC reconstruction algorithm expected in main ePIC simulation soon
 - Λ reconstruction in ZDC looks very promising
 - Expect rapid results when it is available
- New student will need some onboarding time

Thanks for listening, any questions?

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC) grant SAP