Improving |t| measurement through exclusive coherent VM production Exclusive/Diffractive/Tagging PWG

Maci Kesler

Advisors: Zhangbu Xu and Rongrong Ma Collaborators: Ashik Ikbal, Kong Tu, Thomas Ullrich

April 25, 2025

Motivation

Map out gluon structure in nuclei \rightarrow gluon saturation **Critical measurement:** exclusive VM production in scattering Measures spatial distribution of gluons

 $\, \circ \,$ Probe to gluon density \rightarrow precisely see structure

- Distribution of nuclear momentum transfer (|t|) reflects the spatial distribution of gluons inside nucleus
 - |t| conjugate to impact parameter
 - Fourier transform

M. Krelina et al., NPA 989, 187(2019)

Measurements of the |t| distribution encounter 2 primary challenges:

• Limited resolution in measuring |t|

- Peaks and valleys washed out
- Mainly momentum resolution of outgoing electron (blue circles)

Overwhelming incoherent background

- Black dashed curve
- Detector can suppress some incoherent production (red stars)

Extracting t: $e + A \rightarrow e' + A' + V$

- To access *t*: need complete final state
 - Cannot measure $p_{A'}$
- Know 4-momenta of e, A, e', and V
- Different methods to do this

T. Ullrich, (2020).

- Method E: gives true $t = (p_V + p_{e'} p_e)^2$
 - **Cons:** Subtract large incoming/outgoing momenta to get longitudinal component of $t \rightarrow$ small error/inaccuracy has large effect on t
- Method A: ignores longitudinal momenta $t = [\mathbf{p}_T(e') + \mathbf{p}_T(V)]^2$
 - **Cons:** underestimates true t, valid only for small t and small Q^2
- Method L: improvement to Method E, corrects $p_{A'}$ and uses true invariant mass to compensate the smearing $t_{corr} = |p_A p_{A'}^{corr}|^2$
 - Cons: only applies to coherent events

Reconstruct t from exclusive VM production

- Measure *projection of* |t| along the normal direction (\hat{n}) of the electron scattering plane
 - Eliminate momentum resolution contribution from the outgoing e
 - Potential issue: loss of information on gluon structure

Decompose t:

$$t = -(p_{A'}^{\text{corr}} - p_A)^2$$

$$t = t_\perp + t_\parallel \longrightarrow t_\perp = t_x + t_y$$

$$t_\perp = q_\perp^2 = q_x^2 + q_y^2$$

$$t \text{ in terms of } q:$$

$$q_y = \pm \sqrt{|t_y|} = (p_V \cdot \hat{n})\hat{n}$$

$$q_x = \pm \sqrt{|t_x|} = (-p_{A'}^{\text{corr}} + p_A - p_y)(\hat{n} \times \hat{z})$$

Maci Kesler (KSU)

ePIC/EIC Early Science Workshop

Projection technique

Parameterize
$$q_{\perp} = \pm \sqrt{|t_{\perp}|}$$
:
 $q_x = q_{\perp} \sin(\theta)$
 $q_y = q_{\perp} \cos(\theta)$
 $\theta = \tan^{-1}\left(\frac{q_x}{q_y}\right)$

- Cut wedge of angle θ from the \hat{n} -direction (q_y)
- Eliminates most of the *q_x* component

ePIC/EIC Early Science Workshop

Reproduce |t| distribution

Result on |t| distribution

We see a significant improvement!

Next steps...

- Get more statistics
- Correcting
- Fourier Transform to spatial distribution
- Separate coherent and incoherent events
 - $\circ\,$ Determine the fraction of coherently produced VMs by utilizing the transversely polarized electron beams \to spin projection

Link to poster: •Link Link to arxiv: •Link

arXiv:2502.15596

Thank You :)

Backup Slides

Future Plan

- Utilize transversely polarized e⁻ beams
 - e⁻ spin is perpendicular to its momentum
- Exploit decay pattern of VM wrt \hat{n}
 - Determine the fraction of coherently produced VMs

Coherent Events

- If e⁻ spin flips:
 - Spin of VM aligns with \hat{n}
 - $\,\circ\,$ Expect $\cos 2\phi\,$ modulation if we project momentum of VM decay daughter onto VM spin direction

11/9

Future Plan

- If e^- spin does not flip:
 - No preferred direction of VM spin
 - Expect a flat ϕ distribution

Incoherent Events

• VM spin expected to be random wrt \hat{n}

Result:

- $\circ\,$ Fraction of coherent events (case when e^- flips spin) is $<\cos 2\phi>$
- Assume probability for e^- to flip spin is C
- Fraction of total coherent events is given by $\frac{\langle \cos 2\phi \rangle}{C}$
- Can then obtain $|t|_{\hat{n}}$ distributions for coherent VM production
 - Extract spatial distribution of gluons in nucleus

Method L from T. Ullrich EIC WG meeting (2020)

 Any smearing of the longitudinal momentum difference will change the invariant mass of the target

method E

 For coherent events this essentially indicates the failure of method E due to beam and detector smearing effects or that the event was mischaracterized as coherent ⇒ Important analysis/cross-check tool

Method L from T. Ullrich EIC WG meeting (2020)

• How the method works

- Calculate p of outgoing A': $p_{A'} = p_A (p_V + p_{e'} p_e)$
- > Express and correct the outgoing nucleus in light cone variables:

•
$$p_{A'}^+ = E_{A'} + p_{z,A'}$$

• $p_{T,A'}^2 = p_{x,A'}^2 + p_{y,A'}^2$

• $p_{A'}^- = (M_A^2 + p_{T,A'}^2)/p_{A'}^+$ where $p_{A'}^-$ is now modified by using the true mass M_A^2 .

- The corrected 4-momentum of the outgoing nuclei is now $p_{A'}^{\text{corr}} = \left[p_{x,A'}, p_{y,A'}, (p_{A'}^+ p_{\overline{A'}}^-)/2, (p_{A'}^+ + p_{\overline{A'}}^-)/2 \right]$
- In short, you are using the true invariant mass of the nucleus to compensate the smearing in the larger component of the electron 4-momentum by modifying E_{A'} and p_{z,A'} simultaneously.

Now simply:
$$t_{\rm corr} = \left| p_A - p_{A'}^{\rm corr} \right|^2$$