An Overview of the MUS Experiment

Kyle Salamone

Center for Frontiers in Nuclear Science, Stony Brook University

March 18, 2025

This material is based upon work supported by the National Science Foundation under NSF Grant PHY-2412703. The MUSE experiment is supported by the Department of Energy, National Science Foundation, PSI and the US-Israel Binational Science Foundation.

The Proton Radius Puzzle

- 2010: CREMA collaboration (Pohl et al.) measure Lamb Shift in muonic hydrogen
 - Results: $r_p = 0.8418 \pm 0.0007$ fm
- \bullet Average electron scattering measurement: $\sim 0.8770 \pm 0.0127$ fm

The Proton Radius Puzzle Today

Electron Scattering, Electron Spectroscopy, Muon Spectroscopy, CODATA, Global Refits

Kyle Salamone

MUSE Overview

Form Factor Discrepancies

Kyle Salamone

Possible Explanations

- Differences between spectroscopy and scattering?
- Lepton Universality?
- Radiative Corrections?
 - NLO contribution of importance: Two Photon Exchange (TPE)
 - Size of contribution: $R = 1 2\delta_{2\gamma} = \sigma(\ell^+ p) / \sigma(\ell^- p)$

The MUon Scattering Experiment (MUSE)

MUS

- The MUon Scattering Experiment (MUSE) was directly inspired by the proton radius puzzle
- Goals:
 - Precision measurement of r_p via ep and μp scattering
 - Direct test of lepton universality
 - Precision study of TPE in ep and $\mu\textit{p}$ scattering

The Paul Scherrer Institute (PSI)

- Most intense proton cyclotron in the world
- MUSE: π M1 beamline!

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210 \ \text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210 \ \text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210 \ \text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210 \ \text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210 \ \text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210 \ \text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210~\text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210~\text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

- heta acceptance: $20-100^\circ$
- $\pi M1$ Beam Line:
 - $p \in 115, 160, 210 \ \text{MeV/c}$
 - Mixed beam of e, μ , π
 - Both charges of particles!
- Q^2 range for
 - e: 0.0016 0.0820 GeV²
 - μ : 0.0016 0.0799 GeV²

MUSE Simulation

- MUSE uses a detailed Monte Carlo simulation in Geant4
- Recent updates:
 - Including radiative effects
 - Rare event simulation
 - Realistic beam (mixed secondary beam: nontrivial)

Blinding

- Reduce bias: cryptographically blind at tracking stage
- Stochastic suppression of events
 - $p_{sup} = \frac{0.2}{3} (A_i + 0.3 \cos(B_i \theta')) (3 \theta'), A_i \in [0.25, 1], B_i \in [3, 10]$
- Publication: arXiv:2310.11469, responding to PRC referee comments

Analysis: z Vertex Distribution

Kyle Salamone

Proton Radius Puzzle Outlook

Summary/What's Next?

- Analysis of MUSE is progressing nicely
- Awarded 5 months of beamtime starting June 2025
- MUSE will end data taking in 2025!

Blinding: More Detail

- Maximum blinding: 20°, minimum: 100°
- Blind based on PID, momentum, polarity, data/sim: 36 blinding parameters!

