Unresolved Questions in Cold Nuclear Matter

C-J. Naïm

Anaheim Convention Center, Anaheim (CA, USA)

The 11th biennial workshop of the APS Topical Group on Hadronic Physics (GHP2025)

March 10, 2025

Proton-Proton Collisions

At large momentum transfer in pp, scale $Q \gg \Lambda_{QCD} \approx 200 \text{ MeV}$

$$\mathrm{pp} \to \gamma^{\star}/Z^0 \to \ell^+\ell^- + \mathrm{X}$$
 (Drell-Yan)

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\,\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 \, f_i^{\,\mathrm{p}}(x_1,\mu) \int \mathrm{d}x_2 \, f_j^{\,\mathrm{p}}(x_2,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(x_1,x_2,\mu')}{\mathrm{d}y\,\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^n}{Q^n}\right)$$

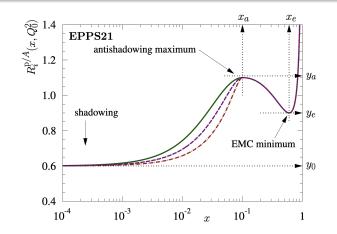
- $ightharpoonup \hat{\sigma}_{ij}$: Partonic cross section calculable in perturbation theory
- \triangleright x_1 , x_2 : Fraction of momentum carried by the parton in the proton
- $ightharpoonup f_{i,j}$: Parton Distribution Function (PDF), **universal**

Proton-Nucleus Collisions

Cross section in pA collisions assuming collinear factorization:

$$\frac{\mathrm{d}\sigma_{\mathrm{p}\mathbf{A}}}{\mathrm{d}y\,\mathrm{d}Q} = \sum_{i,i} \int \mathrm{d}x_1\, f_i^{\,\mathrm{p}}(x_1,\mu) \int \mathrm{d}x_2\, f_j^{\,\mathbf{A}}(x_2,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(x_1,x_2,\mu')}{\mathrm{d}y\,\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathbf{A}}^n}{Q^n}\right)$$

▶ Probing the PDF of a nucleus (without nuclear effects):


$$f_i^{\mathsf{A}} = Z f_i^{\mathsf{p}} + (A - Z) f_i^{\mathsf{n}}$$
 $\sigma_{\mathrm{p}\mathsf{A}} = Z \sigma_{\mathrm{pp}} + (A - Z) \sigma_{\mathrm{pn}} pprox A \sigma_{\mathrm{pp}}$

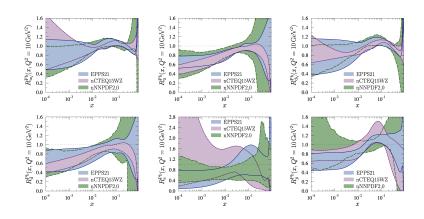
Investigating nuclear effects via:

$$R_{\mathrm{pA}} \equiv \frac{1}{A} \frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}\sigma_{\mathrm{pp}}} pprox 1$$

Nuclear parton distribution functions (nPDF)

- ▶ EMC effect discovered in 1983 in DIS on nuclear targets
- ▶ PDF is modified in nuclei : $f_j^{p/A} \neq f_j^p$

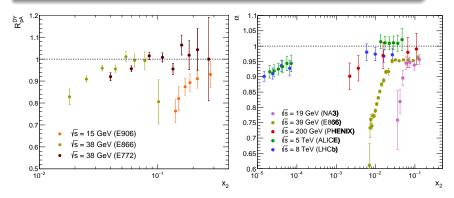
The nuclear modification factor depends on x


nPDF and data-sets

Historically, nPDFs were mainly extracted from DIS data

	EPS09	DSSZ	nCTEQ	EPPS16	EPPS21
e-DIS	✓	✓	✓	✓	✓
u-DIS		√		✓	√
Drell-Yan pA	✓	✓	✓	✓	✓
RHIC hadrons	✓	✓	√	✓	√
LHC data pA (QED)				✓	✓
Drell-Yan π A				✓	√
LHC data pA (D mesons)					✓

- Recent hA collision data included to:
 - Extend the explored *x* range
 - Access gluon nPDF more directly
 - ightarrow Possible biases from additional nuclear effects


nPDF and data-sets

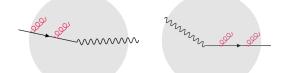
- ▶ nCTEQ15WZ and EPPS21 use heavy quark data in pA
 - ightarrow Strongly impacting $R_g^{\mathbf{A}}$

nPDF Scaling

$$\mathsf{R}_\mathsf{pA}^\mathsf{nPDF}(x,Q^2,\sqrt{s}) \equiv R_\mathsf{pA}(x,Q^2)$$
 should scale as a function of \sqrt{s}

Nuclear dependence for J/ψ and Drell-Yan production

Arleo Naïm Platchkov 1810.05120

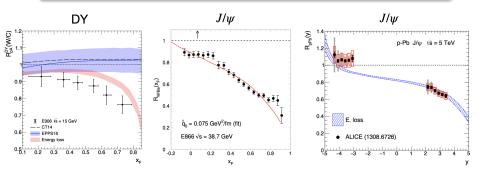

▶ No scaling as a function of \sqrt{s} observed

 $\rightarrow \text{Exploring beyond nPDF effects!}$

Exploring beyond nPDF effects

The nuclear medium affects hard processes differently.

- ▶ $hA \rightarrow \gamma^* + X$ (DY)
 - ► Initial-state interactions
- ▶ $eA \rightarrow e + h + X$ (SIDIS)
 - ► Final-state interactions

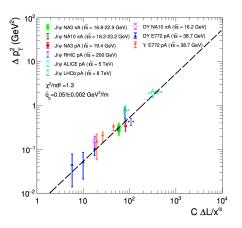


- ▶ $hA \rightarrow c\bar{c}(\rightarrow J/\psi) + X$ (Quarkonia)
 - ► Initial- and final-state interactions

How does the nuclear medium affect particle production?

Energy loss effects

Energy loss effects have successfully described nuclear data

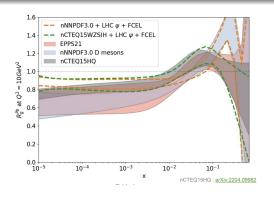

- ▶ E866 and ALICE J/ψ suppression, $\langle \epsilon \rangle_{\mathsf{FCEL}} \propto \sqrt{\hat{q}L}/M \cdot E$
 - Arleo Peigné 1204.4609, 1212.0434, Arleo Kolevatov Peigné Rustamova 2003.06337
- ▶ E906 DY suppression, $\langle \epsilon \rangle_{\text{LPM}} \propto \alpha_s \hat{q} L^2$

Arleo Naïm Platchkov 1810.05120

→ What about other effects?

Transverse Momentum Broadening

Broadening effects have successfully described nuclear data



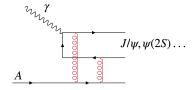
- ▶ J/ψ , ψ' , Υ and DY data: a factor of 400 in beam energy!
- Broadening analysis reveals universal scaling across energies

Arleo Naïm 1810.05120 10 / 19

nPDF including the energy loss effect

A global exhaustive fit: the (only) future path?

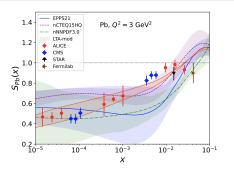
Avez Arleo work ongoing


- ▶ Global fit including nPDF and energy loss from J/ψ suppression
- Significative impact on the shadowing amplitude
 - ightarrow Shadowing would be no more than 10-20% at $x\sim 10^{-5}$

Challenges in constraining gluon shadowing

Constraints on gluon shadowing from LHC pA data

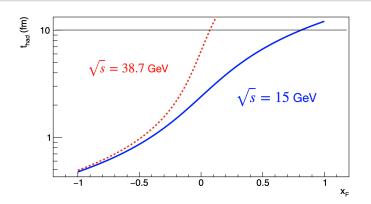
- Limited experimental data for quarkonia and D-mesons
- ► Challenges in distinguishing shadowing from other nuclear effects
- Including energy loss in the global fit drastically reduces the shadowing amplitude by 10-20% at $x\sim 10^{-5}$


Ultra-peripheral collisions (UPC):

 $ightarrow J/\psi$ production in UPCs to probe gluon shadowing

Shadowing amplitude

 J/ψ production in UPCs: a direct probe of $R_{
m g}$



Guzey CFNS cold QCD workshop (2025)

- Strong nuclear suppression of coherent J/ψ photoproduction in Pb-Pb UPC@LHC due to large gluon shadowing at small x
- ► EPPS21, nCTEQ15HQ, nNNPDF3.0 use heavy quarks in pPb
 - \rightarrow A shadowing amplitude up to 60% at $x \sim 10^{-5}$?

Nuclear absorption

Multiple scattering of $Q\bar{Q}$ bound state within the nucleons

- ▶ The typical size of a heavy nucleus is $L \sim 10$ fm
- $lackbox{ } J/\psi$ is mainly produced **outside** the nucleus at large y
 - \rightarrow No J/ψ absorption at LHC forward data

Energy loss or nuclear absorption?

The absorption of quarkonia remains an open question

- $\sigma_{\mathsf{abs}}^{J/\psi} \sim \mathbf{3} 10$ mb: extracted using pA at $y \sim 0$ \to **probably overestimated**Lourence Vort Woehri 0901,3054, Arlee Tram 0612043
- **Energy loss alone coherently explains** J/ψ suppression in pA
- ▶ Possible shadowing effects in nuclear matter: 10%, 20% or more?
- \blacktriangleright What remains of the role of absorption, $\sigma_{\rm abs}^{J/\psi}\ll$ 3 mb?
 - \rightarrow Comparison: J/ψ suppression in eA vs pA collisions The suppression should not be universel

Nuclear Data Challenges

Numerous nuclear data available, from fixed-target to LHC

- ▶ Difficult to interpret due to **multiple effects**
- ▶ Need to isolate specific effects through **golden observables**
- Importance of global approaches (global fits)
- Critical to estimate the precise contribution of shadowing!

 \rightarrow The cold QCD effects are the primary source of uncertainties in the interpretation of AA collisions

Golden observables?

$$\blacktriangleright \ \mathcal{R} = R_{\mathsf{pA}}^{J/\psi}/R_{\mathsf{pA}}^{\psi} \sim S\left(\sigma_{\mathsf{abs}}^{J/\psi}, \mathsf{L}_{\mathsf{A}}\right)/S\left(\sigma_{\mathsf{abs}}^{\psi}, \mathsf{L}_{\mathsf{A}}\right)$$

- Mid rapidity region, small \sqrt{s}
- ▶ Independent of shadowing: $Q_{1/\psi}^2 \sim Q_{\psi}^2$
- ▶ Independent of FCEL: $\langle \epsilon \rangle_{\sf FCEL} \propto 1/M_{\perp}$

$$\triangleright \mathcal{R} = R_{\mathsf{pA}}^{J/\psi} / R_{\mathsf{pA}}^{\Upsilon}$$

- ▶ Weak shadowing dependence, strong sets correlations
- Probe of the mass dependence of FCEL
- ► Transverse momentum broadening Δp_{\perp}^2 in eA and pA collisions
 - ► Independent of shadowing
 - Independent of energy loss
- \blacktriangleright J/ψ production
 - ▶ Test the non-universality of J/ψ suppression in eA and pA
 - ▶ Strong test of $\langle \epsilon \rangle_{\mathsf{FCEL}}$ vs $\langle \epsilon \rangle_{\mathsf{LPM}}$, + possible nuclear abs.
 - ▶ In eA, $\langle \epsilon \rangle_{\mathsf{LPM}} \to 0$ at large \sqrt{s}

Key Questions in Nuclear Collisions

White paper in preparation: Nuclear Cold QCD: Review and Future Strategy

1. Energy Loss Mechanisms

- ► Initial-state (DY), final-state (SIDIS)
- ► Initial/final-states (Quarkonia)

2. Final-State Interactions

Nuclear absorption, comovers

3. Shadowing vs. Saturation

- Shadowing amplitude
- Distinction between leading-twist shadowing and gluon saturation

CFNS Cold QCD workshop

Global Insights and Future Directions

- Nuclear data reveal a scaling violation as a function of x
 - $ightharpoonup R_{\rm pA}$ is not universal
 - Collinear factorization is not satisfied
- ▶ Shadowing uncertainty impacts all data interpretation
- ▶ Energy loss is key to describing the data
- Strategy to address the three questions:
 - ► Assess the limitations of hA data for nPDF studies
 - ► Enhance global fits by incorporating nuclear effects
 - Strongly constrain shadowing using future EIC DIS data
 - ▶ Identify and measure the key observables

No need for more data, but better data AND stronger collaboration between phenomenologists and experimentalists