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Neural networks

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. McCuLLocH and WALTER H. PirTs

Because of the ‘“‘all-or-none” character of nervous activity,
neural events and the relations among them can be treated by
means of propositional logic. It is found that the behavior of
every net can be described in these terms, with the addition of
more complicated logical means for nets containing circles; and
that for any logical expression satisfying certain conditions, one
can find a net behaving in the fashion it describes. It is shown
that many particular choices among possible neurophysiological
assumptions are equivalent, in the sense that for every net be-
having under one assumption, there exists another net which
behaves under the other and gives the same results, although
perhaps not in the same time. Various applications of the calculus
are discussed.

Ui(t -+ 1) = Sgn Z JijUj(t) — 6,
Rial

Bulletin of Mathematical Biophysics, Vol. 5, 1943, p.

McCulloch (right) and
Pitts (left) in 1949

Active neuron: 0; = +1
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Inactive neuron: ¢,

Activation threshold: @
Weights (synapses): Jij

Review: arXiv:2412.18030
3

115-133



Neural networks
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FIG. 2: Energy landscape and trajectories in a model of neu-
ral networks [39]. (A) Solid contours are above a mean level
and dashed contours below, with X marking fixed points at
the bottoms of energy valleys. (B) Corresponding dynamics,
shown as a flow field.

Network owtpur: degree of violation of the maximal cell size constraint
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Network input: processing time of part-operation

Nobel prize in Physics, 2024,
with G. Hinton (“Boltzmann machines”)

The network is sliding down on
a landscape, which is an effective
energy function.

“Coming to a rest at the minimum
of the energy is a computation,
analogous to recalling a memory.”

Review: W. Bialek, arXiv:2412.18030
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Standard Hopfield network

1
E(O’) = —5 E JijO'iO'j,
1j
where the thresholds 6; = 0 J;; = JJ1

We can program the network so that its stable final states are close to some
specific stored patterns by choosing

K
Jij = JZE{“&;‘,

u=1
for K binary patterns we’d like to store. Example: ferromagnet o — El

Local learning rule: update the matrix J depending on the outcome
(Hebbian, Storkey, ...)



The local learning rule

If the system is in a state o at some moment in time,
and we would like to add this to list of stored patterns,
then the synaptic strengths should be adjusted as

Jij—>Jij—|—JUfUJ?. (5)

We notice that this is a local learning rule: what happens
at the synapse between neurons i and j depends only on
the states of those two neurons, and not on the rest of
the network. This is surprising because ground states
are a property of the network as a whole, yet they can
be programmed without global knowledge.

Review: W. Bialek, arXiv:2412.18030

This is analogous to the universal quantum computing theorem:
all gquantum computations can be performed by using only single- and
primary two-qubit gates. 5



Modern Hopfield network

Replace the original energy functional
J J —
2
Blo)= 233 ko=~ 3 (¢ o)
ij p=1 p=1
by a more complicated function

E(o)=—-J) F(¢ o).

For example, for
F(x) = €*
one can store a huge number of patterns,

logK_' ~ alN 6



An ML algorithm

The proposed ML algorithm is as follows:

Perform minimization of fully connected Ising model with fixed boundary
condition on one side (input neuron layer) + open boundary condition on
other side (output neuron layer). Matrix J; is fixed by stored patterns;
Define symmetric matrix from asymmetric J determined by stored p

patterns by N
J=J.J*

Once energy function minimized for given initial quantum state (describing
the input neuron layer): find quantum state on other boundary.

Then compute overlap of this quantum state with stored patterns (next
slide) and pick largest overlap (fidelity) — this provides output of network.



The minimization algorithm

Once patterns stored (matrix J determined): minimize energy of Ising system

1
E(O’) = —5 Zjijo'io'ja
1j

providing fixed boundary condition on input layer (determined by
particular input), and using open boundary condition on output layer.

Once minimization done: find corresponding state described by f :
Then: compute projections of 6 on all stored patterns E'”’ :

i~

(€#1€)]

Largest overlap defines the output of algorithm.



The Storkey Learning Rule

Introduces a local field correction that removes correlations between patterns, increasing network capacity
Jijotorkey = 3,501 #1708 ME s =1/EiMho ! =T/whinMEH, Jis = @

Local field at neuron idue to all neurons except jwhen pattern p is stored:

Njit = ket ke Jik"IERH

1. Increased Capacity 2. Reduced Spurious Memories 3. Improved Convergence
Stores ~Nj/+/(2logN) patterns vs 0.14N for Correction terms reduce creation of Networks converge to stored patterns
standard Hebbian spurious attractors more reliably

Key insight: Accounts for interactions between patterns by considering existing network weights when adding new patterns, creating
better separation in the energy landscape



Dirac 3 "quantum computer’
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Quantum Computing Inc.'s Entroov Quantum Compouter

» Energy-efficient, robust, scalable,

affordable

* Optimization problems

Key Features

* Non-binary qudits 200 discrete mode:

per qudit

« Room temperature operation

Operation

* Problem — photonic architecture

» Optical feedback loops modulate
variable interaction

+ System settles into ground state
(optimal solution)

* Solution readout

NASA:

« Radar image reconstruction (phase

unwrapping)

» LiDAR spectral analysis from lower

Earth orbit
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Dirac-3 Energy Functional

Ising Hamiltonian Input Key Properties
Variables: Integer values (qudits)
E = 2i CiXy + 33,5 JijXiX; + higher-order terms Sum Constraint: 1-10000
Relaxation Schedule: Controls
« Xj: Variables (represented by qudits) quantum dissipation (1-4)
+ C;: Linear coefficients (positive, negative, or zero) Objective: Find lowest energy state

« J;;: Coupling coefficients (any real number)
« Higher-order interactions supported (cubic, quartic, etc.)

Example Polynomial

Local Minimum

E = 3Xg + 2.1%1%2 + 1.5%X2 + 7.9%sX3 + XoX42 + Xg°

(

Global Minimum

Dirac-3 natively handles polynomials beyond quadratic terms

Energy Landscape



Initial State Implementation

Problem: Dirac 3 starts minimization from random state instead of particular state
(input pattern).

Solution: Encode input pattern as magnetic field (bias term) placing us on
correct starting point in energy landscape.

1
E = —EZ]U SiSj — h ZhiSi
Lj i

New parameter h: determines how strong bias term “pulls” us to initial
pattern. In practice, after training: determine which strength h works best.

14



Some first results

Original Noisy Input Classical Result Dirac-3 Result

Weights loaded from trained weights.npy
Dirac-3 time allocation: {'metered': True, 'seconds': §

Running classical solver...

Free account limits us to 100 neurons (or images
Submittin o Dirac-3...
2025-55-02 §3:23:12 3 Dirac allocation balance = 584 s Sma”er than 10)(10

2025-02-06 18:43:13 Job submitted: job id='67a549106f
[2025-02-06 18:43:13 QUEUED

2025-02-06 18:43:16 RUNNING

2025-02-06 18:44:57 COMPLETED

CERI U N LIRS  Classical results are surprisingly fast (even for
Performance Comparison: Iarger images)

Input Digit: 4 | Noise Level: 10.0%
Network Size: 8x8

Classical Solver: Simulation on Dirac3 still needs some refinement
Accuracy: 100.00%
Identified Digit: 4

Dirac-3 Solver:
Total Time: 109.9398 seconds

Accuracy: 59.38%
Identified Digit: 7 15
Energy: -490.72



Toward Quantum Advantage
H = —JZO’Z-ZU; — hZaf
i i

» The key addition is the transverse field term =»
spins can rotate

* Have to solve Quantum Ising model!

* There exists mapping to classical Ising model but
iIn 1 dimension higher (Trotter-Suzuki
decomposition in Path integral Monte Carlo)
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