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The MUon Scattering Experiment (MUSE)

@ 2010: CREMA extract r, through muonic hydrogen spectroscopy: ~ 7.90 from average
ep scattering value at time

@ The MUon Scattering Experiment (MUSE) was directly inspired by the proton radius
puzzle

e Goals:

o Precision measurement of r, via ep and pp scattering
e Precision study of TPE in ep and up scattering
e Direct test of lepton universality

@ Housed at the 1M1 beamline at the Paul Scherrer Institute
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The Straw Tube Trackers (STT)

@ Scattered particle tracking detector in
MUSE
@ Mirrored setup:

o 20 planes of straws (10 horizontal, 10
vertical)

e ~ 3000 straws total

e Smaller front chamber, larger rear
chamber

e 5.1mm straw radius, 60 and 90 cm long
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STT Tracking: Left Right Ambiguity

@ Tracking is not straightforward: Left Right Ambiguity
o Makes y? distribution in minimization complex
e Many local minima for minimizer to get stuck in
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Machine Learning Approach

@ ldea: train a neural network to help resolve this ambiguity
@ NN to predict ¢ in local straw frame
o More accurately: predict (sin (¢), cos (¢))

y
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Training Tools

Convolutional Neural Network structure (CNN)
CosineAnnealingWarmRestarts LR scheduler

Adam optimizer

Loss function: custom wrapper around SmoothL1Loss for masking
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Convolutional Layers

@ Extract certain features from “image” like input

@ Definitions:
e Channels: specific feature or characteristic of the image
o Kernel size: how big each “picture” is

Padding: pad input dimension with zeros

e Stride: how many pixels we move the kernel per “step”

@ ldea: treat planes of straws as 2D image
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https://mlnotebook.github.io/post/CNN1/
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NN Structure M-

LeftRightLearner(nn.Module):

__init_ (self):

super(LeftRightLearner, self)._ init_ ()

self.fc = nn.Sequential(
nn.Conv2d(in_channels=2,out_channels=128, kernel_size=(5,10), stride=(5,5), padding=(9,3)),
nn.ReLU(),
nn.Dropout(0.2),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=1),
nn.ReLU(),
nn.Dropout(0.2),
nn.Flatten(),
nn.Linear(9216, 1624),
nn.ReLU(),
nn.Linear(1024, 2*input_size)

)
forward(self, x):
return self.fc(x)

@ Structure of 1/0:
© 10 arrays of length 89
@ 2 input channels: binary 0/1, hit radius
© Output: (sin(¢),cos(¢))
@ Training* time for 70 epochs with CUDA: ~ 16.5 minutes
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SmoothL1Loss

3 . ; . .
7
e Combines L1 (linear) and L2 (quadratic) ::12 v
loss functions 5| smooth L1

@ [3: hyperparameter, defines transition
point

@ Benefits: less sensitive to outliters than
MSE, can prevent exploding gradients
0 1 1 1 1
0.5(xn—yn)? /B iflxa—yal <B 3 -2 . 0 1 2 3
|xn — yn| —0.55  otherwise

loss(x,y) =
https://wuw.researchgate.net/figure/
Plots-of-the-L1-L2-and-smooth-L1-loss-functions_
fig4_ 321180616
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Loss Function

Mo

MaskedTriglLoss(truth, predicted):

mask = (tr
sin_pred,
sin_pred,

sin_true,

sin2_cos2
sin2_cos2

pred_vec
true_vec

return nn.
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cos_pred predicted[:, :890], predicted[:,890:]
cos_pred sin_pred[mask], cos_pred[mask]
cos_true = torch.sin(truth[mask]), torch.cos(truth[mask])

= torch.square(sin_pred) + torch.square(cos_pred)
true = torch.ones_like(sin2_cos2)

torch.stack([sin_pred, cos_pred, sin2_cos2], dim=1)
torch.stack([sin_true, cos_true, sin2_cos2_true], dim=1)

SmoothLlLoss(beta=0.5) (pred_vec, true_vec)
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Results
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Results are on the validation set, not the training set.
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Results

Angular Residuals Loss Distribution
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Results are on the validation set, not the training set.
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Results

Truth vs Predicted Sin Truth vs Predicted Cos
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Results are on the validation set, not the training set.
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Results

Truth vs Predicted Phi Distribution Predicted sin? + cos? Distribution
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Results are on the validation set, not the training set.
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Thoughts

@ Results are very promising
@ Based on loss curves - not done training!
@ Can test on run data, seems to perform okay (far from perfect) - implementation in main

code...
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Data Results Mo-£

Testing model...

Model inference took ©.018435376001434634 seconds

Plane 1, Straw 33: Truth: @.541, Prediction: 2.987 Difference

Plane 2, Straw 34: Truth: @.541, Prediction: 3.938 Difference 2. Testing model...

Plane 3, Straw 34: Truth: ©.541, Prediction: 4.603 Difference 2. Model inference took ©.0986295849998423364 seconds.

Plane 4, Straw 35: Truth: @.541, Prediction: @.067 Difference
Straw 44: Truth: ©.541, Prediction: @.548 Difference

Plane @, Straw 28: Truth: 3.678, Prediction: 0.349 Difference 2.954
Plane 1, Straw 27: Truth: 3.678, Prediction: 0.221 Difference 2.826
Plane 3, Straw 26: Truth: 3.678, Prediction: 1.844 Difference 2.635

inference took ©.60672756008008866689 seconds. Plane 5, Straw 21: Truth: 3.678, Prediction: 2.633 Difference 1.046

St : Truth: 3.672, Prediction: 3.778 Diff: .166 I
rau h p TS ?c %on ? erence Plane 6, Straw 20: Truth: 3.678, Prediction: 0.706 Difference 2.972
Straw 15: Truth: ©.531, Prediction: @.558 Difference 0.027

Straw 11: Truth: 3.672, Prediction: 3.723 Difference 0.051 Plane 7, Straw 20: Truth: 3.678, Prediction: 0.809 Difference 2.869
Straw 10: Truth: 3.672, Prediction: 3.578 Difference 0.094 Plane 9, Straw 19: Truth: 3.678, Prediction: 0.397 Difference 3.602
Straw 10: Truth: 3.672, Prediction: 3.819 Difference 0.147 Tested!

Straw 9: Truth: 3.672, Prediction: 6.850 Difference 2.377
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C++ Implementation M-

@ Trained model in Python, analysis code in C++/ROOT
@ Many methods tested to implement. ..

Torch C++ API
onnx2code
ONNXRuntime
ROOT TMVA/SOFIE

@ Tested all on performance, ease of use: decided on OpenCV

2,
GO

OpenCV
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Sample OpenCV Code

vector<size_t> good_indices;
k=0;k<10; k++)

std::string model_path "line_model_1@.onnx";
cv::dnn::Net model = cv::dnn::readNetFromONNX(model_path flat_index = 1 + 89*k;
model. setPreferableBackend(cv: :dnn: :DNN_BACKEND_OPENCV) ; T EIEN ] 2 ©cin) el ke 6D o W)
model.setPreferableTarget(cv::dnn: :DNN_TARGET_CPU); ;:zt:::::z::tz iE:::j:::i);s‘;:"i;[f]525:%;21][k][l];
::setNumThreads(1);
array<int, 4> input_shape = {1, 2, 10, 89};
cv::Mat input_mat = cv::Mat::zeros(4, input_shape.data
std: ctor tring> outLayerNames = model.getUnconnectedOutLayersNames();
model.setInput(input_mat);
std: ctor Mat> result;
model.forward(result, outLayerNames);
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@ Prediction gives set of points that lie on each drift tube - fit this to a line — seed for full
fit!
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Conclusions/Future

@ Predictor CNN progressing very well
@ Needs to be trained on more simulated data
@ Fine tune NN structure, hyperparameters, loss function, etc.

@ Work on optimizing C++ implementation
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