

DarkLight@ARIEL Experiment Simulation Study

Siddhartha Gupte Stony Brook University

DarkLight and the Search for Hidden-Sector Physics

- Standard Model explains only $\sim 5\%$ of the universe
- What lies beyond the Standard Model?
- Precision searches for the low-mass, weakly coupled particles

DarkLight and the Search for Hidden-Sector Physics

- Standard Model explains only $\sim 5\%$ of the universe
- What lies beyond the Standard Model?
- Precision searches for the low-mass, weakly coupled particles
- **DarkLight**: Designed to explore the hidden sector via electron-nucleus interactions in a fixed-target setup

The X17 Anomaly: A Window into the Dark Sector?

• ATOMKI observed excess in e⁺e⁻ angular distribution

The X17 Anomaly: A Window into the Dark Sector?

- ATOMKI observed excess in e⁺e⁻ angular distribution
- Anomaly seen in ⁸Be and ⁴He nuclear transitions

The X17 Anomaly: A Window into the Dark Sector?

- ATOMKI observed excess in e⁺e⁻ angular distribution
- Anomaly seen in ⁸Be and ⁴He nuclear transitions
- Interpreted as possible new boson: $mass \approx 17 \text{ MeV } (X17)$

Dense target optimised for minimum multiple scattering

Dense target optimised for minimum multiple scattering

Dense target optimised for minimum multiple scattering

COOKER Framework

- Reconstructs the particle trajectories using GEM detector hits data
- Converts the 2D hit positions into 3D tracks

- Reconstructs the particle trajectories using GEM detector hits data
- Converts the 2D hit positions into 3D tracks
- Each event provides hit positions on the Lower GEM, Upper GEM, and the Trigger Plane.
- Initially, all hits are **unlabeled** and **not** associated with any track.
- Goal: Build candidate tracks by combining GEM hits and checking for consistency with Trigger hits

• Form all possible **GEM** hit pairs between Upper and Lower GEM planes.

• Each pair defines a candidate track.

- Form all possible **GEM** hit pairs between Upper and Lower planes
- Each pair defines a candidate track
- Project each track onto the **Trigger** plane
- Compare **projected hits** with **actual** Trigger hits

- Filtering the tracks?
- Currently using **distance-based filtering**.
- Accept tracks only if the distance is below a threshold.
- Future improvements: Evaluating additional filtering strategies like χ^2 fit quality, Kalman filtering

- Uses candidate tracks from GEMTrack from both spectrometer arms.
- Reconstructs the reaction point (vertex) of the event
- Critical for identifying e⁺e⁻ pairs from possible new particles
- Current implementation uses two methods: Polynomial fit, ML-Based Fit (XGBoost)

Schematic of the cut-away view of spectrometer and particle trajectories

- Uses candidate tracks from GEMTrack from both spectrometer arms.
- Reconstructs the reaction point (vertex) of the event
- Critical for identifying e⁺e⁻ pairs from possible new particles
- Current implementation uses two methods: Polynomial fit, ML-Based Fit (XGBoost)

Schematic of the cut-away view of spectrometer and particle trajectories

Signal Momentum Comparison

Signal In-Plane Angle Comparison

Signal Out-of-Plane Angle Comparison

Plugin 3: MassRecon

