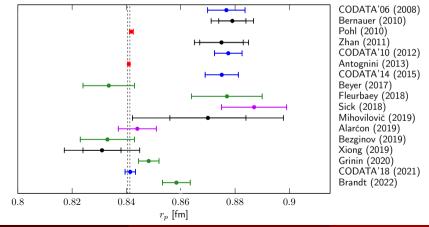


Kyle Salamone

Center for Frontiers in Nuclear Science, Stony Brook University

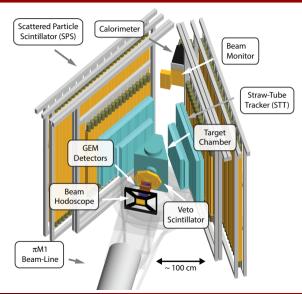
May 16, 2025



This material is based upon work supported by the National Science Foundation under NSF Grant PHY-2412703. The MUSE experiment is supported by the Department of Energy, NSF, PSI and the US-Israel Binational Science Foundation.

The MUon Scattering Experiment (MUSE)

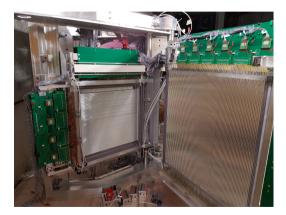
- 2010: CREMA extract r_p through muonic hydrogen spectroscopy
 - $\sim 7.9\sigma$ from average ep scattering value at time
- Birth of Proton Radius Puzzle

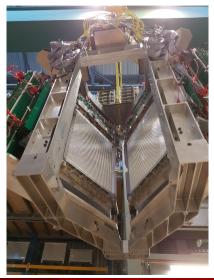


- The MUon Scattering Experiment (MUSE) was directly inspired by the proton radius puzzle
- Goals:
 - Precision measurement of r_p via ep and μp scattering
 - Precision study of TPE in ep and $\mu\textit{p}$ scattering
 - Direct test of lepton universality
- Housed at the π M1 beamline at the Paul Scherrer Institute

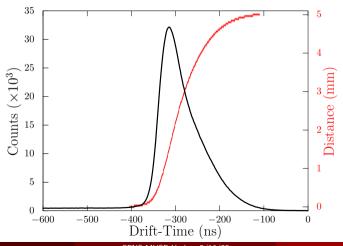
- θ acceptance: $20 100^{\circ}$
- $\pi M1$ Beam Line:
 - $p{\in}$ 115, 160, 210 $\,MeV/c$
 - Mixed beam of e, μ , π
 - Both polarities of particles!

The Straw Tube Trackers (STT)


MUS


- Primary scattered particle tracking detector in MUSE
- Mirrored setup:
 - 20 planes of straws (10 horizontal, 10 vertical)
 - Vertical planes: θ
 - $\bullet~$ Horizontal planes: ϕ
 - Smaller front chamber, larger rear chamber
 - 5.1mm straw radius, 60 and 90 cm long
 - ullet \sim 3000 straws total

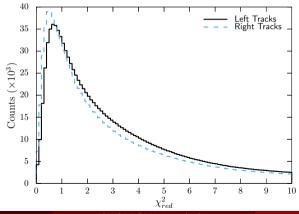
The Straw Tube Trackers (STT)


Kyle Salamone

CFNS MUSE Update 5/16/25

STT Analysis

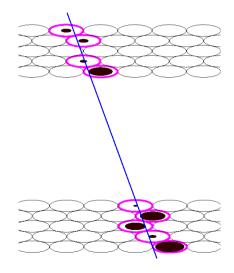
- $\bullet~$ Particle ionizes gas $\rightarrow~$ interrupt signal
- Reads out drift time of signal not position of hit


Kyle Salamone

STT Tracking

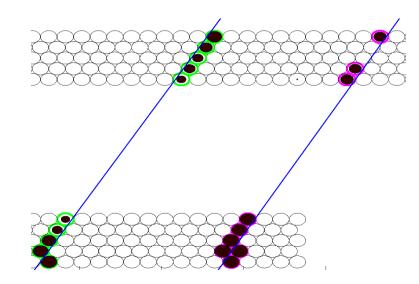
MUS

• Process:


- Filter out noise hits/group tracks together
- $\bullet\,$ Parametrize track using spherical coordinates \rightarrow 4 free parameters
- Minimize χ^2 of track to hits (represented by cylinders)

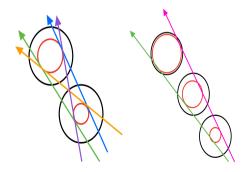
Kyle Salamone

STT Tracking: Sample Events

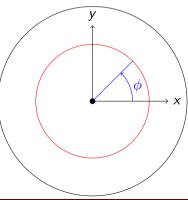


Kyle Salamone

STT Tracking: Sample Events



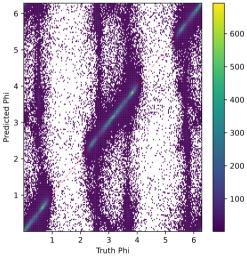
STT Tracking: Difficulties


MUS

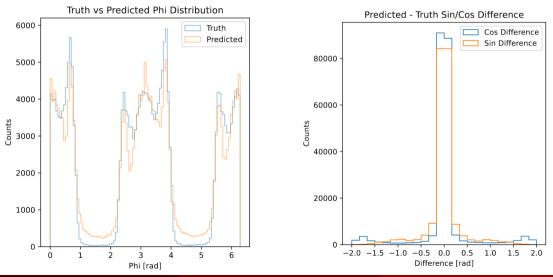
- Tracking is not straightforward: Left Right Ambiguity
- $\bullet\,$ Makes χ^2 distribution in minimization complex
 - Many local minima for minimizer to get stuck in
- Seeding minimizer very sensitive to starting guess
 - Tried using OLS to straw centers, using SPS for seeds all insufficient

Machine Learning Approach

- Idea: train a neural network to help resolve this ambiguity
- NN to predict ϕ in local straw frame
- Input: hits on set of 5 planes
- Goal: seed minimizer with these predictions, or first pass to refine it

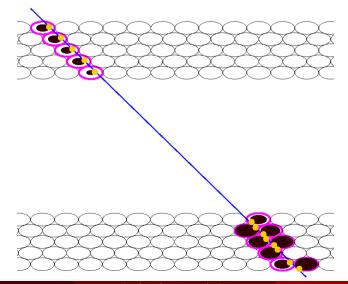


Machine Learning Results


Truth vs Prediction Phi

- Still work in progress
- Generating larger dataset as we speak

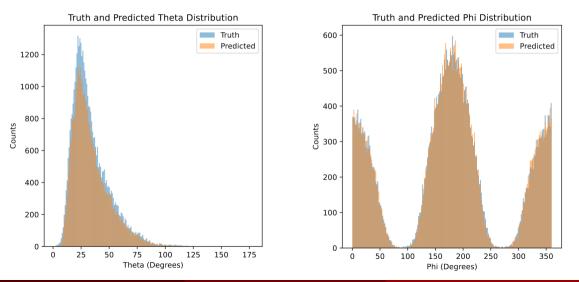
Machine Learning Results



Kyle Salamone

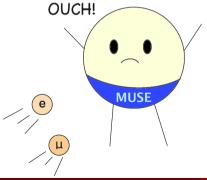
May 16, 2025 13 / 17

Machine Learning Results



- Since these predictions are used as a first pass in fitting still need seed
- Idea: use NN to predict θ , ϕ for *track*
- Promising, very preliminary results
- Next: need NN to predict seed position not just direction
 - Idea: have CNN learn projection to z = 0 plane

Future Work



Kyle Salamone

Summary

- MUSE will precisely extract r_p via ep and μp scattering
- Precise STT tracking is pivotal to this measurement
- Tracking is improving continuously, but still has ambiguity
- Machine learning may be useful to help address this ambiguity!

