to MAP the flavor of the **3D nucleon structure**

Center for Frontiers in Nuclear Science

Filippo Delcarro

CFNS Postdoc Seminars 18th April 2025

What is the structure of the nucleon?

What about the spin?

1D

Collinear PDF \rightarrow

3D

Transverse Momentum Dependent distributions

PV20Sivers

polarized

 $f_1(x,k_\perp;Q^2)-f_{1T}^\perp(x,k_\perp;Q^2)$

PV17

unpolarized

4

Unpolarized TMD extractions

	Accuracy	SIDIS	DY	Z production	N of points	χ²/N _{data}
Pavia 2017 JHEP 06 (2017) 081	NLL				8059	1.55
SV 2019 <i>JHEP</i> 06 (2020) 137	N ³ LL				1039	1.06
MAPTMD22 <i>JHEP</i> 10 (2022) 127	N ³ LL				2031	1.06

still missing an important ingredient...

Flavor separation is a fundamental step to fully explore nucleon structure

<u>Flavor dependence of unpolarized quark Transverse Momentum Distributions from a global fit</u> A. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi, M. Cerutti, FD, M. Radici, L. Rossi, A. Signori

MAP Collaboration JHEP08(2024)232

Transverse Momentum Distributions

3-dimensional map of the internal structure of the nucleon (in momentum space)

unpolarized TMD PDF

Features:

- **Universality:** same function, multiple processes
- (x, kT) dependence
- **Q2** energy scale evolution
- flavor?

quark polarisation

	leading twist	U	L	Τ
pol.	U	f_1		h_1^\perp
cleon	L		g_{1L}	h_{1L}^{\perp}
onu	Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp
-		t-odd		t-even

Transverse Momentum Distributions

3-dimensional map of the internal structure of the nucleon

unpolarized TMD FF

Features:

Universality: same function, multiple processes

- (z, P_T) dependence
- Q2 energy scale evolution
- flavor?

quark polarisation Τ U L leading twist pol U adron G_{1L} H_{1L}^{\perp} L D_{1T}^{\perp} G_{1T}^{\perp} $|H_1, H_{1T}^{\perp}|$ Τ Η t-odd t-even

TMD formalism: factorization **SIDIS** multiplicities

• The <u>W term</u> dominates in the region where $q_T \ll Q$

$$^{2}/Q^{2})$$

TMD formalism: factorization **DY cross section**

In $q_T^2 \ll Q^2$ and $M^2 \ll Q^2$ region:

$$F_{UU}^{1}(x_{A}, x_{B}, \mathbf{q}_{T}, Q) = x_{A}x_{B}\mathcal{H}^{DY}(Q; \mu) \sum_{a} c_{a}(Q^{2})$$

W term

Arnold, Metz and Schlegel, Phys.Rev.D 79 (2009)

TMD factorization: TMD components

TMD in Fourier space

$$\hat{F}(x, b_T^2; \mu, \zeta) = \int \frac{d^2 \mathbf{k}_\perp}{(2\pi)^2} e^{i\mathbf{b}_T \cdot \mathbf{k}_\perp} F(x, k)$$

$$\hat{f}_{1}^{q}(x, b_{T}^{2}; \mu, \zeta) = \sum_{j} C_{q/j}(x, b_{*}; \mu_{b_{*}}, \mu_{b_{*}}^{2}) \otimes \tilde{f}_{1}^{j}(x, \mu_{b_{*}})$$
Perturbative TMD at the initial scale
$$\text{Perturbative} \times \exp\left\{K(b_{*}; \mu_{b_{*}})\ln\frac{\sqrt{\zeta}}{\mu_{b_{*}}} + \int_{\mu_{b_{*}}}^{\mu} \frac{d\mu'}{\mu'}\left[\gamma_{F} - \gamma_{K}\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\} : B$$
Evolution to final energy scale of the process

$$\times f_{NP}(x, b_T^2) \exp\left\{g_K\right\}$$

Non-perturbative part of the TMD

Collins, "Foundations of Perturbative QCD"

b_{*}-prescription

11

Nanga Parbat: a MAP fit framework

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

Our starting point: MAPTMD22 FI global fit

flavor independent	
Global fit: DY + SIDIS	10^5
2031 data points	10^4
DY data 484	$\sum_{i=1}^{N} 10^{3}$
SIDIS data	
	10^1

Perturbative accuracy: N³LL⁻

SIDIS DY fixed target DY collider

 \boldsymbol{x}

13

MAPTMD22 parametrisation

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_E \right)$$

$$D_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3A}}} \right)$$
$$g_K(b_T^2) = -g_2^2 \frac{b_T^2}{4}$$

11 parameters for TMD PDF + 1 for NP evolution + 9 for TMD FF = 21 free parameters

$$_{B}k_{\perp}^{2}e^{-\frac{k_{\perp}^{2}}{g_{1}B}} + \lambda_{C}e^{-\frac{k_{\perp}^{2}}{g_{1}C}}\Big)$$

$$g_1(x) = N_1 \frac{\langle x \rangle}{(1 - \hat{x})^{\alpha}} \hat{x}^{\sigma}$$
$$g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1 - z)^{\gamma}}{(\hat{z}^{\beta} + \delta)(1 - \hat{z})^{\gamma}}$$

$$(x) = N_1 \frac{(1-x)^{\alpha} x}{(1-\hat{x})^{\alpha} \hat{x}}$$

$$\left(-\frac{P_{\perp}^2}{g_{3B}}\right)$$

MAPTMD22 summary

- Global fit of DY and SIDIS data: 2031 data points
- **Normalization** of SIDIS multiplicities beyond NLL
- Number of fitted parameters: 21
- Perturbative accuracy: N³LL⁻

15

MAPTMD22 improvement: MAPTMD24

Global fit of DY and SIDIS data: 2031 data points -> Same data sets

Normalization of SIDIS multiplicities beyond NLL ---- Same approach

Number of fitted parameters: 24 96

Same parametrisation (but flavour dependent)

MAPTMD24 flavor parametrization

(10x5) parameters for TMD PDF
 + (9x5) for TMD FF
 + 1 for NP evolution
 = 96 free parameters

Negative fragmenting mesons: charge conjugation

17

MAPTMD24 extraction - Results

	$N^{3}LL$			
Data set	$N_{\rm dat}$	χ^2_D	χ^2_λ	χ^2_0
DY collider total	251	1.37	0.28	1.65
DY fixed-target total	233	0.63	0.31	0.94
HERMES total	344	0.81	0.24	1.05
COMPASS total	1203	0.67	0.27	0.94
SIDIS total	1547	0.70	0.26	0.96
Total	2031	0.81	0.27	1.08

 $\chi_0^2 = \chi_D^2 + \chi_\lambda^2$

2405.13833

 $\chi^2/N_{data} = 1.08$

	$N^{3}LL$			
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	χ^2_0
DY collider total	251	1.37	0.28	1.65
DY fixed-target total	233	0.63	0.31	0.94
HERMES total	344	0.81	0.24	1.05
COMPASS total	1203	0.67	0.27	0.94
SIDIS total	1547	0.70	0.26	0.96
Total	2031	0.81	0.27	1.08

2405.13833

19

	$ m N^3LL$			
Data set	$N_{ m dat}$	χ^2_D	χ^2_λ	χ_0^2
DY collider total	251	1.37	0.28	1.65
DY fixed-target total	233	0.63	0.31	0.94
HERMES total	344	0.81	0.24	1.05
COMPASS total	1203	0.67	0.27	0.94
SIDIS total	1547	0.70	0.26	0.96
Total	2031	0.81	0.27	1.08

2405.13833

		N^3	LL
Data set	N_{dat}	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27

SIDIS data: really good agreement

		N^3	LL
Data set	$N_{\rm dat}$	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27

E288 E772 E605

DY fixed: still really good agreem

2405.13833

	N ³ LL			
Data set	N_{dat}	χ^2_D	χ^2_λ	
DY collider total	251	1.37	0.28	
DY fixed-target total	233	0.63	0.31	
HERMES total	344	0.81	0.24	
COMPASS total	1203	0.67	0.27	
SIDIS total	1547	0.70	0.26	
Total	2031	0.81	0.27	

DY collider: quite good agreement

2405.13833

CMS

STAR 510

Atlas

		\mathbb{N}^3	LL
Data set	$N_{\rm dat}$	χ^2_D	χ^2_λ
DY collider total	251	1.37	0.28
DY fixed-target total	233	0.63	0.31
HERMES total	344	0.81	0.24
COMPASS total	1203	0.67	0.27
SIDIS total	1547	0.70	0.26
Total	2031	0.81	0.27
	_		.

DY collider: quite good agreement

2405.13833

MAPTMD24 - Results Flavor-dependent unpolarized TMD PDFs

2405.13833

MAPTMD24 - TMD PDF

The sea is the least constrained

Very different k_{\perp} - behaviours!

2405.13833

The **up** quark is the most constrained

also x-dependent

MAPTMD24 - TMD FF

Some signals of differences between favored and unfavored channels

MAPTMD24 - TMD FF

Strong differences between different hadron fragmentations

MAPTMD24 evolution - Collins-Soper kernel

2405.13833

MAPTMD24 - Scatter plots

Evidence of different behaviors for different flavors Evidence of different behaviors for different measured hadrons

Conclusions

The extractions of **unpolarized quark TMDs** through global fits have reached very high accuracy (NNNLL), we need to introduce flavor dependence to obtain good theory/data agreement, especially with future, more precise experiments (EIC)

MAPTMD24 is the **first** simultaneous extraction of **flavor-dependent** unpolarized TMD PDFs and FF through a global fit

- We observed *significant* differences between the flavors in the *TMD PDFs*.
- We observed *significant* differences between different final hadrons in the TMD FFs.

We are finding a weak signal between different flavors in the same final hadron.

