

Laying the Framework for EMCAL R&D and Future Gamma Spectroscopy in Fixed Target Experiments

Mark Harvey
Texas Southern University

CFNS Workshop: Advancing Nuclear Physics: New Horizons with Fixed-Target Proton-Nucleus Experiments at Intermediate Energies July 11, 2025

Introduction & Motivation

- Motivation: Develop an electromagnetic calorimeter (EMCAL) for gamma detection in fixed-target experiments
- Gamma spectroscopy is a powerful tool for studying nuclear structure and reaction dynamics
- Long-term interest: excited state dynamics in exotic nuclei (e.g., EIC)
- Current focus: detector development and student training

Project Overview

• Student-centered, early-stage R&D effort

Not tied to a specific experiment yet

 Building capability and training students in simulation, construction, and testing

BeAGLE Simulations Mark Ddamulira

- Simulating e-Au Collisions at EIC Energies Using BeAGLE
- Simulated e-Au collisions with BeAGLE to study gamma production
- Investigated the potential for rare isotope production at the EIC
- Identified forward-scattered gamma events using pseudorapidity selection
- Tagged photons by production stage:
 - Hard scattering
 - Intranuclear cascade
 - Evaporation/Fission
- Enables stage-specific analysis of gamma emission
- Supports studies of excited state dynamics in exotic nuclei

- Undergrad studies @ TSU
- NP graduate student at Michigan State University

Nuclear Reactions of Relevance

Results: Forward Scatters M. Ddamulira

Dark Box Construction Jerry Breda

- Dimensions: 1.3 m (L) × 0.60 m (W) × 0.7 m (H)
 –sizable enough to accommodate multiple detector components
- **Light Tightness**: Fully sealed with black sealant and rubber gaskets to block ambient light
- Cable Connections: Equipped with ten cable glands for secure BNC-type connections
- Construction: Built from durable particleboard with a matte black interior and finished exterior for durability and aesthetics

- Undergrad studies TSU
- NP graduate student at Howard University

Summer R&D at BNL Giraude Griffin

- BNL TSU Collaboration on SiPM Readout
- Joint effort to develop software for test readout platform for multi-tower CAL prototypes
- Using CAEN DT5702: 32-channel SiPM readout, dynamic range of ~5000 p.e. at gain 1×10⁶
- Initial tests by M. Chiu
 (BNL) and G. Giraude
 (TSU) show promising results
- Current setup uses Hamamatsu S12572-015P (same as in sPHENIX)
 - → Coupled to PHENIX PbWO₄ crystals (2.2×2.2×18 cm³)
- Serves as a testbed for evaluating the performance and integration of EMCAL components

- Undergrad studies @ TSU
- NP postbac student at TSU

Future R&D Plans Giraude Griffin (w/ M. Chiu)

- Goal: Develop Optimized EMCAL for HEET or Future EIC Upgrade
- SiPM R&D:
 - Currently testing: HPK S12572-015P (3×3 mm², left in image)
 - Large area option: HPK S13360-6075CS (6×6 mm², center)
 - UV-sensitive option: HPK VUV4 (10×10 mm², right; sensitive <170 nm, developed for nEXO)
- Calorimeter Material Studies:
 - PbWO₄: Fast timing, but emission spectrum cuts off ~ 350 nm (see right plot)
 - LYSO: also under consideration...
 - Challenge: Need material (e.g., special glass?) transparent at low wavelengths
- Toward "DREAM" Calorimeter (Dual Readout Concept):
 - CKOV Readout: UV-sensitive SiPM, low-λ bandpass, fast timing → fast shaping needed (early waveform only)
 - SCINT Readout: Mid-high-λ bandpass, relaxed timing requirements

 Mark Harvey TSU

Radiat.Meas. 38 (2004) 813-816

Geant4 Simulations J. Breda & G. Griffin

- Students gaining hands-on experience with Geant4 (v11.6) for detector simulation
- Successfully modeled gamma interactions in LSO(Ce), LYSO(Ce), and PbWO₄ (See image in upper right)
- Produced and analyzed energy deposition spectra, photopeak, and Compton edge
- Explore material effects on energy resolution and angular dependence
- Results inform prototype design for gamma detection in high-radiation environments
- GPU-based photon tracing using the Opticks package for faster, more detailed light propagation simulations (J. Breda/M. Chiu)

Mark Harvey - TSU

Next Steps

- Begin physical construction of EMCAL prototype
- Plan for test beam validation
- Continue simulation and material studies
- Engage students in all phases of development

Mark Harvey - TSU

Vision & Summary

- Foundational R&D effort with strong student involvement
- Focus on gamma detection in fixed-target experiments
- Flexible design for future nuclear physics applications
- Invitation for feedback and collaboration from the community

Acknowledgements

- Mickey Chiu (BNL & Texas Southern University), DOE Grant No. DE-SC0012704 (BNL), particularly the Nuclear Physics Traineeships program
- DOE Grant No. DE-SC0024606: HBCU Collider Consortium, Reaching a New Energy Sciences Workforce (RENEW); FAMU, TSU & Howard

Extra Slide

Exploratory Test Beam Possibilities at AGS/HEET — Motivated by Abhay's comments

- AGS/HEET offers a broad range of ion beams (e.g., p, He, Si, Au) and fixed-target infrastructure
- EMCAL prototypes can be tested in realistic photon-rich environments
- Use enriched stable isotope targets (e.g., Li-6, Be-9, C-13) for gamma production
 - Enriched stable isotopes: non-radioactive, available, and enable clean reactions for detector benchmarking
- Benchmark detector performance: resolution, timing, and efficiency
- Supports student training in beamline operations and detector commissioning
- Exploratory studies only not a defined fixed-target physics program