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Are there 3 quarks in

the proton? No - there are many
more- there are
guarks and anti-quarks
BUT and gluons- collectively
Known as ‘partons’

Ja(x) - g(x)].dx = 3 \
the net number of quarks is 3 This is known as the

3 valence quarks give the Gross-Llewellyn-Smith
proton its flavour properties sum-rule
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When a collision happens at the LHC a parton from one of the protons (A) takes

a fraction x,; of the momentum of this proton and a parton from the other proton

(B) takes a fraction x, of the momentum of this proton, such that the centre-of-
mass energy squared of this collision is not s =(13 TeV)?it is X;X,S

Thus the energy involved in each collision-its scale- is different
AND the probability of each collision depends on the joint probability that proton A
contained a parton of momentum fraction x; , f,(X;), and proton B contained a
parton of momentum fraction x, , f,(X,), and that these two partons were of the
right type, or flavour to interact to make final state X (as embodied in the cross
section for interaction o, ,x).
The probabilities * momentum fractions: x,f,(X,), X,f,(x,), are the parton
momentum distributions or PDFs
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In this figure the total momentum taken by all the
partons sum to unity

There are 2 u-valence quarks to each 1 d-valence
guark- though their momentum distributions are
NOT exactly the same

And you can see that there is a ‘SEA’ of quark-
antiquark pairs as well as GLUONS at low-
momentum

What is much more interesting than the
numbers of quarks is their momentum
distributions xq(x)- known as Parton
Distributions Functions PDFs- where X is
the fractional momentum that the struck
quark takes of the proton’s momentum

These momentum
distributions depend on the
dynamics of the interactions
between quarks and gluons-

Quantum Chromo Dynamics
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Parton momentum distributions

change with the scale of the probe:

Q2%=p2-E%~10 GeV? is typical scale
for low energy experiments

And the harder we hit the more of
this activity we see- rather than
seeing further sub-structure
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radiating gluons and the

gluons are splitting into
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Whereas Q?=~10%%GeV? are the
scales that we are now probing at the
Large Hadron Collider

And at this scale the

proton is pretty well all
glue



How did we come to know all this?

From Deep Inelastic Scattering of leptons on hadrons. The
HERA e-p collider provides the most extensive data set today,
but there are also earlier fixed target leptob-scattering results

RN

The HERA the e-p collider at DESY, Hamburg.
~500pb-! per experiment split ~equally between e* and e-beams:
ARXIV:1506.06042

Running at Ep =920, 820, 575, 460 GeV
Vs = 320, 300, 251, 225 GeV
From 1992-2007



PDFs were first investigated in deep inelastic

Leptonic
lepton-nucleon scatterning -DIS fensor -
2 calculable
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measurable



Without assumptions as to what goes on in the hadron the double differential
cross-section for e* N scattering can be written as

d25(e£N) =

AN

Leptonic part hadronic part

F,, F, and xF; are structure functions
which express the dependence of the cross-section

on the structure of the nucleon (hadron)—

The Quark-Parton Model interprets these structure
functions as related to the momentum distributions of
point-like quarks or partons within the nucteon AND
the measurable kinematic variable x = Q?%/(2p.q) is
interpreted as the FRACTIONAL momentum of the
Incoming nucleon taken by the struck quark

We can extract all three structure functions
experimentally by looking at the x, y, Q% dependence
of the double differential cross-section- thus we can
check out the parton model predictions

2ra’s [ Y4 Fo(x,Q%) - Y2 F (x,Q%) £ Y_XF4(x,Q9)], Y+=1% (1-y)’

2(%)
0

V*(g)

a{xF)

q(xP+q)

N(F)

B

-

(XP+0)%=x?p2+g>+2xp.q ~ 0

for massless quarks and pz~0
SO

x = Q%(2p.q)

The FRACTIONAL
momentum of the incoming
nucleon taken by the struck

quark is the MEASURABLE
quantity x
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So the prediction was that the differential cross-
section for lepton-proton scattering would depend
only on the structure function F,
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AND that

F,(x,Q%) = Zje(xa(x) + xq(x))

F, would be independent of the
scale of the probe Q?

How good is this?
Pretty good- this is a log plot

Non-point like structure would

have ~1/Q2 behaviour, we are

sure there is no substructure
down to 10-1° m now.

But it's clearly not perfect

Before we leave this page NOTE

the terrific kinematic reach of the

HERA e-p scattering experiments
— 5 decades in x and Q?



The theory of Quantum Chromo-Dynamics (QCD) improves on the Quark Parton Model
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Before the quark is struck? become non-perturbative T m

because the strong
coupling ag(Q?) is too
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The DGLAP parton evolution equations

The strong coupling ag
decreases as the scale Q2

increases
Paaq . . Pag .
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So F,(x,Q?) = Z;e2(xq(x,Q?) + xq(x,Q?))
in Leading Order QCD

The theory predicts the rate at which
the parton distributions (both quarks
and gluons) evolve with Q?- (the energy
scale of the probe) -BUT it does not
predict their shape at Q?,



But is Leading Order enough? What if higher orders are needed?

And the structure function F, is no
longer so simply expressed in terms
of partons -

convolution with coefficient
functions is needed —

but these are calculable in QCD
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This just means we need to Cal2. ate) = a5 fy(2)
calculate higher-order splitting
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And the structure function F_is no longer zero..

... it depends on the gluon (we are no longer
scattering from purely spin-1/2 Quarks)



It remains true that we know how to evolve parton distributions from low to high
scale and how to construct the measurable structure functions from them.

The only thing we don’t know from THEORY is what the shapes of the parton
distributions are at the starting scale- this is a non-perturbative problem that is not
yet solved. Lattice gauge theory may one day help with this,but right now, we must
induce it from data in the perturbative region.

The cleanest data theoretically are those from Deep Inelastic Scattering

So in more detail...



There is differing information according to which leptons and nucleons you
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Charged lepton proton and deuteron data gives different combinations of quark flavours.
(Low energy y-exchange only formulae, HERA went beyond this to W,Z exchange)

E(v.vN)=x(u+u+d+d+s+s+c+c
2( ' ) ( ) u,d,s quarks and antiquarks are intrinsic

— - — to the proton heavier quarks like c, b are
xF, (v.vN) =x(u—u+d—d) =x(u,+d)) generated in gluon to g-gbar splitting

Further information can be extracted from neutrino beam data
The gluon comes indirectly from QCD from the rate of change with Q?
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These expressions to give an idea of which flavours contribute. In practice there are
higher-order corrections but it is all completely calculable

You just need to know what the PDFs are at a starting scale Q?, — and QCD will tell you
what they are for any scale Q? > Q?,



How do you know what the PDFs are at the starting scale?
You don’t, you have to parametrise them at a starting scale Q?,

xgi(x) = AixPi (1= x)“ Pi(x).  q = {u. 1, d.d, s. 5 c g}

Where P;(x) can be ordinary polynomials of x, or \x, or Chebyshevs, Bernstein
polynomials, typically ~30 parameters---- or even a neural net

Some parameters are fixed through conservation of the total amount of momentum
and the number of quarks of each flavour - but others are model choices-

Model choices =>Form of parametrization at Q2 value of Q2, which data are accepted for
the fit, what kinematic cuts are applied to the data, ‘heavy quark schemes’, values of heavy
quark masses

Use QCD to ‘evolve’ these PDFs to higher scale Q? >Q?,

Construct predictions for the measurable structure functions in terms of PDFs for
~4000 data points across the x,Q? plane

Perform x2 fit to the data.

The fact that so few parameters allows us to fit so many data points established
QCD as the THEORY OF THE STRONG INTERACTION and provided the first
measurements of the strong interaction coupling, a (M)



NOW we evolve the PDFs from the HERA region up to the LHC region

LHC kinematics Y

D 4 X12 = —— exp(xy)
Om‘?g_ @S 00 Central+Fvd. Jets A S
0 i
T o e To create an object with a mass M
s and rapidity y for the LHC center of
) mass energy S we need to have
L e “" __ two partons with momentum
10 I ‘ fraction of corresponding proton
! | h\@ : of x,and x,
10k o | | | e At electroweak scale, LHC needs
07 100 “{3"' TSV TV M PDFs with x>10*

And assuming the PDFs are universal—actually only proven for Drell-Yan— we
predict LHC cross sections.

So we can also use SM LHC processes —those which can be reliable predicted to
fixed order in QCD---to improve the PDFs....
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We now use many other processes than
deep-inelastic scattering for the
determination of PDFs

We use many SM processes that can be
reliably calculated to NNLO in fixed
order QCD

« Drell-Yan data from fixed targets and
the Tevatron and LHC

* W,Z rapidity spectra from Tevatron
and LHC

« Jet pT spectra from Tevatron and
LHC

« Top-anti-top differential cross-
sections

« W and Z +jet spectra, or W,Z pt
spectra

« W and Z +heavy flavours

* Beware: there may be new physics at
high scale that we ‘fit away’

16



How do the PDFs look before/after LHC data?
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But several groups extract PDFs and there are significant differences between them
because of slightly different model choices:

« EXxact choice of data entering fit and cuts impose on them
« Choice of heavy quark masses, heavy quark schemes

« Choice of starting scale for QCD evolution, Value of ag(M,)
And differing methodology

« Use of parametrization, what parametrization 17
« Use of NN, what architecture, training, stopping etc



The ‘big three’ of PDF fitting groups are CT, NNPDF and MSHT

The latest CT18, NNPDF4.0, MSHT20. Be agnostic in the choice between these.
The one with the smallest uncertainties is not necessary the best.

Note CT18 actually came out end 2019 (1912.10053), MSHT came out end 2020
(2012.04684), NNPDF4.0 in 2021(2109.02653 ). NNPDF3.1 in 2017
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This looks as if we are doing reasonably well —but look at ratios....




Ratio

Ratio

Xg(x,Q), comparison

XU (x,Q), comparison xd (x,Q), comparison )
15— — T — L L) AL e E 4.0_MC
' == nnpafa 0 Mc s nnpdi4 0 MC i 18E _ g’}%mﬁm
14 s CTI18ANNLO H e, e CT18ANNLO ”\ E
MSHT2ONNLO error M 1300 . e MSHT20NNLO_errog| 16
Q=3.16e+00 GeV || Q - 3166+00 GeV [fa‘ 3 1.4E K|
§ / = E :
S 5 12 5
58 w 2 E— g
o @
£ e ] I ;
s g 0.8k -
H 3 E K
i 8 0.6 &
g § 0.4F }
0.2
Lid INEn 0_ 111l 3 111 L1
10* 107 19*2 10" 1 107 107 19(-2 107 1
XU(x,Q), comparison xd(x,Q), comparison X5(x,Q), comparison
‘ f— e g ' Fss nnpdf4.0 MC 1.5
4= oz CT18ANNLO | 4= cTisanNLo - 0 4B
132 e MSHT20NNLO_§ 13 s MSHT20NNL07 _____
Q = 3.16e+00 Gf E Q = 3.16e+00 7 s
125 § 128 g g
1.1 8L S 5
-------- @ i il
e £ £ 03 §
S < E < o <
02 § 09F § g
0.8 H 0_32_ - H
0.7 5 0,72— E E
06 0.6F .
05 il Lol Lol Lo 0.5: ol Lol T L 05 Lo ool L | L AN
107 107 1 ())(’2 107 1 107 107 1072 1071 1 107 107 1 ?(*2 10" 1
X -

Differences are more obvious in ratio. They are large at small-x and at high-x, where there is less
data. Differing model choices matter.

Different methodologies matter.

So also do theory choices, standard is NNLO, often using NNLO/NLO ‘k-factors’ but such
calculations can differ. Even when using direct NNLO grids - treatment of grid uncertainties can
differ.

PDFs also differ in how they evaluate their uncertainties some use enhanced x2 tolerances - g
closer to the hypothesis testing criterion— but this is a whole lecture series in itself.




Quark-Antiquark, luminosity

One way to see the impact of the uncertainties ;s
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Uncertainty in the high-x sea?-one example

Current BSM searches in High Mass Drell-Yan are limited by high-x antiquark
uncertainties as well as by high-x valence quark uncertainties

Drell-Yan production L% 10 ?ETi-?gTeV, 3.21b" Iilgj;a
rt 10° Dilepton Search Selection B Tor Quarks
q ) 10° [ Diboson
o 10° — 2, 3TeY
a Z/y . —— AZenst _ 20 TeV
| 10
1
Drell-Yan is a term for g-gbar — p* p- collisions 10
mediated by Z or virtual y,Z bosons. 10”
Some new theories predict higher mass 2 £ 14 e P
states, these have been excluded up to 2 TeV § 8-31 T {10 —

The main reason we cannot do better is that 65200 @00 000 2000 000
the PDF uncertainty on the ‘normal’ Standard Dimuon Invariant Mass [GeV]
Model background is too big.
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What about the Higgs? Gluon-gluon to Higgs is the dominant

channel
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And the uncertainty on the calculation for this is ~50% from uncertainty on the
gluon PDF

All indications are that the Higgs boson that we have seen is the Higgs boson of the
Standard Model (SM) , but measurements are not as yet very accurate.

Beyond Standard Model (BSM) physics can manifest itself as small discrepancies from
SM predictions. We need to reduce uncertainties on our predictions.




But as well as limiting our ability to identify BSM effects at high My,
uncertainties on PDFs also limit indirect observations of new physics which we
may hope to make by measuring discrepancies from the Standard Model (SM)
values for fundamental parameters such as m,, —the W mass

(1 + Ar). The W mass is predicted in the SM in terms of
other SM parameters like the fine structure
Hz)y S constant and the weak coupling G, but Ar
represents higher order loops in the diagrams

W ngéiji which are presently calculated with known particles
WWOM y like the top quark or Higgs, but could also contain
- BSM patrticles.

CMS Preliminary
1 1

monwey 4" In that case the value of m,, would differ from
its SM value

And indeed that is what we saw in the 2022 CDF

measurement from FermiLab
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However, this has been checked at the LHC.
The plot shows the latest measurements from ATLAS and CMS (2024).
A major contribution to the uncertainty of these measurements is the PDF
uncertainty, which comprises half the uncertainty in both cases. LHC uses p-p not p-
pbar and its kinematic reach is such that most collisions producing W are sea-quark3
collisions.



What is our problem?
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Has there been progress in recent years?
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The PDF4LHC group makes combinations of the PDFs from the three main
fitting groups NNPDF, CT and MSHT (arxiv:2203.05506)
First try to understand differences by using a common data set and common

settings for heavy quark masses and alphas
@ Use fits to reduced common datasets and common theory settings.
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Ver\;* good agreement within uncertaintie;, including gluon.-
Similar size uncertainties in data regions, differences outside this,
reflecting remaining methodological and other choices.

Agreement much improved relative to global PDFs.

Same data and theory settings — consistent PDFs. Smaller
remaining differences, e.g. in errors, reflect methodological choices.

BUT It is not recommended to use these reduced fits, greater consistency does not mean greater
accuracy—the methodological differences in the main fits are there for a reason!

PDF4LHC21 compromise combination uses modified CT (HQ masses) and NNPDF3.1

(closer to common data set) but does not strive for common methodology, 26
or to determine inter-PDF set correlations (eg as requested by LHC-EW group)




PDF4LHC21 (which was published in 2022)

PDF4LHC21 actually combines variants of CT18 and NNPDF3.1 with MSHT20.
Variants set heavy quark masses to a common value and have a slight difference in
input data sets for NNPDF3.1.

The combination is a statistical combination without correlations between the three input
PDFs. Where the three input PDFs are consistent the resulting PDF4LHC uncertainty
represents an average of the the PDF set uncertainties—generally closest to, though
smaller than, the largest uncertainty of the three, namely CT18. But where there are
discrepancies the PDF4LHC uncertainty can be larger than those of any of the
individual sets since they include the spread in the central prediction
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These plots represent ratios of uncertainties 27
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The PDF4LHC group makes
combinations of the PDFs from the
three main fitting groups NNPDF,
CT and MSHT

The combination has
just been superseded by the
PDF4LHC21 combination

There IS an improvement in
uncertainty BUT this is not enough
to reduce the PDF uncertainty on
on LHC measurement of

m,y sin?@,, as(M,) dramatically
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Since the issue of PDF4LHC21 there has been the new PDF set from NNPDF4.0
This has a lot of new data from the LHC and considerable decrease in uncertainty, with
respect to NNPDF3.1.

BUT the improvements in uncertainty are not so much due to the new data, they are
more due to improvements in their procedure.

Unfortunately decrease in uncertainty of a single PDF does not help much if there are
discrepancies with other PDFs.

The uncertainty on combination of PDFs will remain higher than the uncertainty of any
individual PDF set
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And there are other PDFs eg ABMP, which does not use jet data

And ATLAS itself produces PDFs... 29



SO how can we improve PDFs?-A study of potential improvements has been made

using processes which are now statistics limited, where the High-Luminosity LHC (HL-

LHC) should help

Top quark pair production W + ¢ production Drell-Yan production

f — VW I
X,

anpoaad

Jat production Z pr Direct photon production

S — Y VW LT —— LY

DL 1R

Pseudo-data is generated for these processes assuming luminosity of 3 ab -1 for
CMS and ATLAS and 0.3 ab -1 for LHCb

Pessimistic and Optimistic assumptions are made about systematic uncertainties

based on experience with real data
Both about the effect of correlations-- typically, f ., = 1, 0.25
And about possible reduction in uncertainty typically, f ..,= 1, 0.4
This is about as good as you can do with pseudo-data but let’s not forget that

this is a somewhat ideal situation
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So we see potential improvements in the PDFs at the HL-LHC
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Where scenario A is pessimistic and scenario C is optimistic
--Such improvements could give up to a factor 2 improvement in the PDF
uncertainty on something like m,,
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But are we being a little too optimistic?

One of the issues with LHC data is that realistically it involves the combination of
many data sets analysed by different groups and with differing procedures for the
evaluation of systematic uncertainties, which makes cross-correlating them difficult.
Such correlations are not usually known/applied

Recent work by ATLAS uses many different types of LHC data, evaluating the
largest correlations (arXiv:2112.11266)
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The larger correlations come between data sets such as: inclusive jets, W or Z boson
+jets, t-tbar in lepton+jets mode

The difference between accounting for the correlations or not doing so is the shift
from red to blue—shown in ratio here

It is not a big effect, but if you want ~1% accuracy on PDFs then it matters 32



Also, there is a danger when fitting & amas oA
high scale data—such as high pT jet = f [ gy I o e
production- of ‘fitting away’ the very E

BSM effects you would like to look for, i S
le including the deviations BSM from ‘
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But just before we get to the new machines..

Another issue Is that PDFs are extracted at finite

order, the current state of the art is NNLO

How much difference does this make?

We use the variation of uncertainties on the choice of
scale for the process as a measure of the missing
higher order corrections.

The natural scale for W,Z boson production is the

mass of the boson. This is varied by a factor of two to

evaluate the scale uncertainty.

The plots show the change in the PDFs when including

or not including scale uncertainty for W, Z boson

production under two assumptions:

« Scale uncertainties correlated between W and Z
and between data taken at 7 and 8 TeV

« Scale uncertainties correlated between W and Z but
not between data taken at 7 and 8 TeV

This is not a very big effect but it matters if we are
striving for ultimate accuracy O(1%)



Another issue is that PDFs are extracted at finite order, the current state of

the artis NNLO

We use the variation of uncertainties on the choice of scale for the process as a
measure of the missing higher order corrections.. MHOUSs are now included in some

PDFs notably NNPDF

BUT recently there has been a move to N3LO..which is not fully computed yet
so MSHT and NNPDF have given approximate PDFs.. The differences between
NNLO and aN3LO are larger than our estimates from MHOUSs led us to believe, but
also the two groups do not agree very well with each other

Differences between PDFs at aN3LO are in general larger than at NNLO, especially for gluon
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SO HOW MAY WE ACTUALLY DO MUCH BETTER?
One thing that has always made PDF fitters agree better with each other is

better data. We need New DIS machines...

LHeC and FCC-eh

energy recovery LINAC
e-beam: 60 GeV
Lint = 1 ab?

Civil Engineering - J'\ |
4| Different Options
¥ Fraction 1/3-174-1/5 s

PN J
’ RS e 17

LHeC may be considered as a
‘bridge’ project to any possible future i
FCC arXiv:2503.17727 L

LHeC (FCC-eh) complementary to, synchronous with, HL-LHC (FCC)




electron
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electron
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electrons, ions

possible
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electron
injection
(rapid cycling
synchrotron)
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alternating
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The Electron lon Collider
at Brookhaven

AND this one WILL
definitely happen !

One of the issues with LHC
data is that realistically it
involves the combination of
many data sets analysed by
different groups and with
differing procedures for the
evaluation of systematic
uncertainties, which makes
cross-correlating them
difficult.

A new DIS machine would
instead give a consistent data
set across a wide x, Q2 range



Consider the kinematic reach of each of these
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The LHeC would extend sensitivity to gluon and sea at low X

xg(x,Q), comparison
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Consider the EIC

This time the big impact is at high x

ePump: Schmidt, Pumplin, and Yuan; PRD%8 (2018) no.9, 094005
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* inclusive EIC may surpass total impact of fixed-target DIS in modern fits

And this is only to mention the impact on Parton Distribution Functions which

are afunction of the fractional longitudinal momentum of the parton. The EIC is
about much more, transverse momentum distributions, spin, generalized 40
parton distribution functions etc



Summary
What have we learnt about/from the deep structure of the proton in the last

40 years?
*It’s full of partons- quarks, antiquarks and gluons
*The harder you look the more of them you see
*Established Quantum-Chromo-Dynamics as the theory of the strong interaction
*Measurement of its essential parameters: Parton Distribution Functions, the strong coupling
parameter, a,(M,) and the running of a, with scale
Sets the background for discovery physics at the LHC

But the PDF uncertainties need to be reduced

*Precision PDFs are needed reduce the background in searches for BSM physics- both at the
LHC and any FCC-hh

*They are also needed for precision measurements of SM parameters, where small deviations
from SM values may indicate BSM physics

*The measurements from the High Luminosity —LHC should improve on our current knowledge

*But a dedicated Deep Inelastic Scattering machine such as an LHeC/FCCeh or EIC could do
better --- and EIC will definitely happen!

« And I have only spoken about the longitudinal momemtum distributions of the partons, the
EIC will also probe transverse momentum and spin distributions

* And we should learn more about QCD beyond the DGLAP formalism— gluon saturation,
BFKL resummation.

But there is no time for that today!
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Consequence of uncertainty in the high-x gluon?-one example

Many interesting processes at the LHC are gluon-gluon initiate

..BSM processes like gluon-gluon — gluino-gluii g
And the high-scale needed for this involves the high-x gl
The gluon-gluon luminosity at high-scale is not well-kno g

This leads to uncertainties on the gluino pair production cross ___~

Gluon-Glueon, luminosity
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IIIII

CMS Phase-2 Simulation Preliminary 14 TeV ?
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The plot shows the projected decrease in the statistical uncertainty on sin?6,,
with future data
But the PDF uncertainty will not decrease much
Unless some further constraints can be applied
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Since the issue of PDF4LHC21 there has been
a new PDF set from NNPDF4.0
This has a lot of new data from the LHC

Nevertheless the improvements in uncertainty are
not much due to these data, they are more due
to improvements in their procedure

The top plot compares the uncertainties of
NNPDF4.0 and 3.1 data sets using the SAME
new methodology

The bottom plot shows the impact of the
methodology on the SAME new data set

4.0 shows new methodology and 3.1 here shows
old methodology on new data-set

There has been a lot of debate in the PDF
community over the new methodology.

But if we just accept it this still does not help
much if one is trying to combine with other PDFs

MSHT20 and CT18 with different central values
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Paper provides a combination of the two
aN3LO PDFs to produce aN3LOHXSWG,;
note this is not a benchmarked study,
just a combination of the two aN3LO
PDFs generating the same number of
MC replicas for each.



The strong rise in the gluon density at
small-x leads to speculation that there may
ALSO be a need for non-linear terms in
the evolution equations?-
gluon recombination gg—g co
gluon splitting g —gg

And the gluon distribution might satutgte?

v
)=t

520000009,

w " o
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etes with
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Non-linear fan diagrams could
be imprtant at low X

But is there any experimental evidence for

the need for such extensions to the
formalism?

Colour Glass Condensa/(e, JIMWLK, BK
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When you look at the sea and the
gluon deduced from the DGLAP
formalism at low Q2 there are odd

ZEUS

features

6 - Q=1 Gev? N 2.5 Gev?

— ZEUS NLO QCD fit

%2,

the gluon is no longer steep at small x — In
fact its valence-like or even negative!

xg

The problem is that we are deducing this from

limited information i .

VZZ tot. error
(0‘,= free)

So far at low-x, we only use

F, ~xq forthe sea

dF,/dInQ? ~ Pgg xg  for the gluon
Unusual behaviour of dF,/dInQ? may come from

unusual gluon or from unusual Pqg- alternative
BFKL evolution?. Non-linear effects?

We need alternative ways to probe the gluon




We need other gluon sensitive measurements like F :in NLO DGLAP FL is given by

Fi(z.Q% = % [% [ %'zap,(y: @) +zz;s££ %2(1 — 2)paly. Q’J]

And at low-x this becomes gluon dominated

H1 Collaboration

FL
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@ HI
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Now there are HERA measurements
on F_analysis completed in 2013:
Compare to various NLO DGLAP fits

Unfortunately this is not conclusive

H1 Collaboration

Floqes T8 g8 8 8 § 28 58 3 ¢
0.3}

0.2} t
0.1}
[ — ACOT - IIM ¢ H1 Data
ok R B-SAT
L
2 10 0
Q?/ GeV?

And compare to alternative theoretical
predictions:

IIM and B-Sat are different dipole models
which can accommodate non-linear
effects/ saturation eg |IM colour glass
condensate
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There are small signs of strain in the low Q%/low x HERA combined 2015 data

H1 and ZEUS

Fit x2 deteriorates at low Q2
And NNLO is NOT better than NLO

Study two different ways of getting a
better fit at low Q% low-x

Adding higher twists or introducing
In(1/x) resummation

These work for 2.5 < Q2 < 25 GeV=2..for
lower Q2 you need something else

NOTE: HERA data at
low Q2 are also at low-x
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Now examine the alternative approach of In(1/x) resummation adding terms to
DGLAP splitting functions and coefficient functions — see talk of Bertone

The programme to do these High Energy Leading log resummation (HELL)
has been implemented in xFitter

Comparison to data
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Comparison to data in the lowest Q2 bins shows
that the fit with low x resummation is much better
able to follow the turn over of the data that happen:
at low-x, low Q?, high-y due to the F term in the
reduced cross section
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