
• IceCube is a km3 of ice in Antartica, with 5160 optical modules [1] used 

as a neutrino telescope.

• It detects Cherenkov light produced when a neutrino interacts with 

quarks and antiquarks in the target nucleons.

• There is a systematic source of error from the process of reconstructing 

the energy and direction of neutrino from Cherenkov light.

• To recover true variables from these reconstructed ones, unfolding is 

used.

• The Richardson-Lucy unfolding algorithm [2] is used.

• The unfolding matrix (A) is created from the probability a value in a true bin j is in some 

reconstructed bin i.

• It starts with a guess of the true distribution, then in iterations makes an estimate of the 

reconstructed distribution (di) from the current unfolded distribution ( ) and the unfolding 

matrix.

• Each iteration the algorithm attempts to minimize the difference between the estimate and 

unfolded distributions.

• α is a vector that represents the acceptance loss when making the unfolding matrix.
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Applying an Unfolding Method with Monte Carlo Simulations of IceCube Electron (anti-)Neutrinos 

induced Cascade Data

Binning Optimization

Results on NuGen Monte Carlo Simulated IceCube Data

Figure 1: A test of the Richardson-Lucy unfolding algorithm with toy data. The 

reconstructed data has an assumed resolution of 0.25 and no bias. 100 iterations was used 

for the unfolding algorithm. The reconstructed data is in 60 x 60 bins, and the true and 

unfolded data is in 30 x 30 bins. 
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Discussion/Conclusion

IceCube Neutrino Observatory is a cubic kilometer detector located at the 

South Pole in Antarctica. In this project we will utilize Monte Carlo Pass2 

high energy neutrino induced cascade data, re-optimize energy and zenith 

binning and study unfolding of true electron (anti-)neutrino kinematic 

variables. The neutrino Monte Carlo generators used in NuGen, studies 

comparing to Lepton Injector are in progess.

Figure 2: The final results of unfolding the Monte Carlo simulated data. The bin width here is .2 for log(E) space, and .5 for 

cos(Z) space. 4 iterations of the unfolding algorithm were run.  

Figure 3: Graphing showing sampling log-likelihood ratio (black), and the log-

likelihood ratio of the unfolding after 2 iterations. Since the unfolding is past the 

critical value (red), the algorithm will run double the iterations and stop
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• Unfolding is a process that takes a distribution of reconstructed data and 

finds the true distribution from that and needs an unfolding matrix.

• To create an unfolding matrix, Monte Carlo simulations of events are 

used where both true and reconstructed values are known.

• The unfolding matrix is the probability an event in a reconstructed bin is 

in some true bin.

• Below is an unfolding test with toy data, with the data sampled from 3 

normal distributions and a unform background.

Unfolding

• The unfolding algorithm takes a reconstructed distribution and finds the 

true distribution associated with it.

• To create the unfolding matrix, NuGen Monte Carlo simulations where 

the true values are known were used. Studies with Lepton Injector are in 

progress.

• Bin sizes were found by looking at resolution and minimum statistics.

• Iterations count was found from log-likelihood ratios minimizing bias 

while keeping variance low.

• Future work could be done to implement error analysis when unfolding.

• The algorithm could also be tested with different flavors of neutrinos.

The number of iterations with a small bias, which decreases through iterations, 

and a small variance, which increases through iterations, needs to be found. To 

do this, a log-likelihood ratio is used to estimate the bias from the 

reconstructed values, because the true values are unknown [3]. The difference 

between the reconstructed and unfolded is found, and when the log-likelihood 

passes a critical value the iterations are stopped. To get the critical value, a 

Poisson sample is taken from the reconstructed 100,000 times, and the log-

likelihood is found for each time. When the log-likelihood passes half of that 

distribution, where p = 0.5, double the iterations is run. This results in 4 

iterations being run when used on the simulated data.

Credit: IceCube Collaboration 

The Unfolding Algorithm Optimizing Unfolding Iterations

• The parameters of interest are the energy of the neutrino and zenith angle. They are unfolded 

together as a 2D histogram, with log(E) as the x-axis and cos(Z) as the y-axis.

• A bin width of .2 was chosen for log(E), corresponding to 22 bins

• A bin width of .5, or 4 bins, was chosen for 

cos(Z)

• This was done by looking at the resolution 

of the reconstructed data, and by looking at 

the minimum number of events for the bins 

on the edge of the histogram.

• The graph on the right shows the energy 

data binned, with a timespan of 11 years, as 

it is for unfolding.

• Using optimized number of bins and iterations, the result is below.

• A timespan of 11 years was used when weighting.

• The results were tested against a χ2 distribution and a good agreement was found.
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Cosmic Ray Muon Flux

hpDIRC at ePIC
The Electron-Ion Collider (EIC) is a next-generation collider being built at BNL to 
study the quark and gluon structure of matter.

The hpDIRC (high-precision Detection of Internally Reflected Cherenkov light) is a 
compact Cherenkov detector that identifies charged hadrons and muons by imaging 
Cherenkov photons (their unique Cherenkov ring) produced in synthetic fused silica 
bars.

a) Cross-section of hpDIRC in action
b) Proposed setup; long bars in cylindrical shape
c) Connection point between fused silica and expansion volume

Cosmic Ray Muons and the CRT
Cosmic muons are high-energy particles produced in the atmosphere that 
reach Earth’s surface at a steady rate. Muons don’t interact much with most 
matter and have long lifetimes; at the EIC, they provide a convenient calibration 
source for detectors like the hpDIRC for both detector validation and future data 
correction in ePIC.

The cosmic ray telescope (CRT) detects and reconstructs cosmic muon 
trajectories, providing precise timing and position data to calibrate and conduct 
performance validation of the hpDIRC detector.

Calculations & Simulation Experiment & Conclusion
Theoretical calculations and Monte Carlo (and other) simulations using the CRY 
cosmic ray generator model muon flux and trajectories through the detector 
setup. These simulations also calculate solid angle and muon flux, supporting 
design optimization and interpretation of experimental data for precise 
calibration of the hpDIRC.

We used a mini Cosmic Ray Telescope (mini-CRT) consisting of stacked 
scintillators coupled to photomultiplier tubes (PMTs) to measure the flux of 
cosmic muons at the detector site. By varying the high-voltage supply to the 
PMTs, we found an optimal operating range maximizing muon signal detection 
while suppressing background noise. Triple-coincidence logic between 
scintillator ensured event validity. 

*Images obtained from epic-eic.org and researchgate.net
*Images obtained from home.cern and jlab.org

*Image generated by my code in Python
*Images taken or generated by myself or my code

hpDIRC

Theoretical flux calculated using Gaisser Parameterization:
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Expected muon flux from cosmic rays at sea level:

Φ𝜇 = 167 ± 0.3𝑚−2𝑠−1

Simulated & calculated solid angle: Ω = 0.62𝑠𝑟

Simulated muon flux: Φ𝜇 = 160 ± 13𝑚−2𝑠−1

Experimental flux: 16.1 𝑚−2𝑠−1

Experimental error: 𝑑Φ𝑒 = ±0.8𝑚−2𝑠−1

Experimental flux value is roughly an order of 
magnitude smaller than expected, likely due to a 
much smaller angle of acceptance than anticipated, 
as well as the triple coincidence logic likely cutting 
out many possible trigger events.

Ryan Palumbo, Purdue University
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Motivation
At Brookhaven National Laboratory,
the CeC proof-of-principle experi-
ment takes place as a part of the Rel-
ativistic Heavy Ion Collider. We aim
to validate the ability of CeC through
the plasma-cascade microbunching
instability (PCI) of the electron beam
[1]. CeC uses the electrostatic
interaction between electrons and
hadrons to drastically reduce the
cooling times of accelerators and
colliders, with an LHC-like simulation
showing a significant decrease from
about 13 hours to 1 hour [2].

Figure 1: Unfocused beam profile at YAG1.

Background
Particle beams have a property called emittance, the area that the particles
take up when plotting the beam in position-momentum phase space. For
example, the normalized RMS emittance in the x-direction can be defined
as

εx = γβ
√

σ2
xσ

2
px
− σ2

xpx
.

From this, a smaller beam has lower emittance. PCI-based CeC requires
an electron beam with low emittance. Two factors are considered in this
study:

Solenoid current of Low Energy Beam Transports (LEBTs)
Solenoid current of the 112 MHz SRF electron gun

To find the optimal currents, we used simulation software known as
IMPACT-T. IMPACT-T is a three-dimensional program that tracks relativistic
charged particles [3]. We simulated and measured at the sections shown
in Fig. 1.

Figure 2: Focused scope of beamline. The orange box encloses the SRF electron gun, the green box encloses the first solenoid
in the beamline “LEBT1," and the black line placed at YAG1 shows where we collected data in simulations and experiments.

Figure 3: Profile of focused beam at YAG1.

Once optimized, the beam should no
longer look like Fig. 1. Rather, it
will be smaller and have a low mea-
sured emittance, visually resembling
the profile in Fig. 3.

Procedure
Using the YAG1 profile monitor, we looked at beam width as a function
of LEBT1 and gun solenoid currents, and beam emittance as a function
of gun solenoid current. Optimizing beam width and emittance each had
different steps:

Beam width:
1. Simulate each current for 800 pC

bunches
2. Vary LEBT1 & gun solenoid current
3. Measure average RMS x- and y-

widths at YAG1

Beam emittance:
1. Simulate each current with varying

size bunches
2. Vary electron gun solenoid current
3. Measure the projected emittance at

YAG1

Results
Our work in minimizing beam width found the optimal current settings of
±4.5 A for LEBT1. It also revealed a large mismatch between our expecta-
tions and experimental data, seen by the overshooting simulations in Fig.
4 that shift down in Fig. 5. This was caused by our outdated IMPACT-T
beamline setup.

Figure 4: First simulation comparison. Figure 5: Updated simulation comparison.

0 pC bunches and 800 pC bunches were tested to further verify simulation
accuracy. Fig. 6 is unaffected by space-charge, thus simulations should,
but do not, match the experiment. Fig. 7 uses the experimental bunch
setting. It mostly agrees until about 8.7 A and is optimal around 8.6 A.

Figure 6: RMS width using 0 pC bunches, shows a mismatch.
Figure 7: RMS width using 800 pC bunches, shows departure.

The projected X and Y emittance comparisons helped confirm where the
minimum emittance is for the 800 pC bunches but were otherwise incon-
clusive. The large mismatch in Fig. 9 prompted us to see how 0 pC would
change given the absence of space-charge, with results shown in Fig. 8.

Figure 8: 0 pC simulation comparison. Figure 9: 800 pC simulation comparison.

The deviation from simulations could be caused by:
Non-uniform beam charge density
Incorrect photocathode recess measurement affecting electric field
strength and focusing in the SRF cavity

Conclusion
After making corrections to the beamline setup, we gained more accurate
simulations and found optimal LEBT1 and SRF gun solenoid currents of
around ±4.5 A and 8.6 A, respectively. The experimental width measure-
ments aligned with our expectations. The optimal LEBT1 and SRF gun
solenoid currents for minimized emittance are still unclear given the large
mismatch between simulations and experimental data.

Further work includes generating new electromagnetic field maps for
IMPACT-T to account for the new photocathode recess. Another simu-
lation software may also be used to test 0 pC bunches, as IMPACT-T is
better suited for space-charge-dominated beams.
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Rivet-ing Heavy-flavor-based Analyses from PHENIX
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Event Generators

Rivet (Robust Independent Validation of Experiment and Theory) is a system for 

validating event generators and running analyses on experiments. 

Rivet

Rivet Analyses

References

Summary and Thanks

Aguilar, Manny Rosales, et al, PYTHIA 8 underlying event tune for RHIC energies, Physical Review D 105 (2022). 

Bellm Johannes, Gellersen Leif, High dimensional parameter tuning for event generators, The European Physics Journal 

C (2019).

Bierlich, Christian, et al, Confronting experimental data with heavy-ion models: Rivet for heavy ions, The European 

Physics Journal C (2020).

Buckley, Andy, et al, Systematic event generator tuning for the LHC, The European Physics Journal C (2009).

PHENIX Collaboration, Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-

Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV, Physical Review Letter 103 (2009). 

PHENIX Collaboration, Single Electrons from Heavy Flavor Decays in p+p Collisions at √s = 200 GeV, Physical Review 

Letter 96, 032001 (2006).

Plätzer, Simon, Event Generators and Resummation, University of Graz.

STAR Collaboration, Measurements of D0 and D* Production in p+p Collisions at √s = 200 GeV, Physicsl Review D 86 

(2012). 

Next Steps: Tuning

We see a noticeable difference between our output and our data, especially at low pT. At higher pT we see 

much more variance in event generator output, due to low sample size. 

We have developed Rivet analyses to compare event generator output and 

experimental data for heavy-flavor contributions. With these we will use the 

PROFESSOR tuning method to optimize model parameters for PYTHIA8. 

I would like to thank Dr. Roli Esha and Professor Axel Drees for mentoring me on 

this project. 

Event generators simulate the interactions of particles. They can simulate many different 

possible processes of particle production.

Event generators are a convenient way to simulate runs of large experiments. In addition, 

by comparing event generator output to experiment data we can gain an improved picture of 

the event structure. 

Abstract

PYTHIA has been one of the more reliable event generators to model relativistic collisions. With an upgrade 

from the Fortran-based PYTHIA6 to a C++-based PYTHIA8, in addition to new physics processes, newer 

models based on Multi-Parton Interactions (MPI) have been implemented. In the process, the Monash tune of 

model parameters for PYTHIA8 works well for LHC energies. However, at RHIC energies, there is a significant 

difference between event generator models and experimental findings, specifically for heavy flavor production. 

We approach this problem by using the PROFESSOR tuning method to optimize the model parameters. 

Writing Rivet analyses to compare PYTHIA8 simulation to data allows PROFESSOR to calculate a goodness 

of fit function, which is sampled within our parameter space. Using a polynomial fit of the goodness of fit 

function on the model parameters, the optimal tune is calculated. We hope to use this to tune PYTHIA8 to 

better model physics at RHIC energies.

Comparing Event Generators to Experiment

When looking at heavy flavor cross sections at RHIC, PYTHIA8 values, obtained with the Detroit tune, gives 

smaller results than we find from other models. 

where σpp is the cross section for proton-proton inelastic collisions at 200 GeV, which is 42 mb.  

The invariant cross section is given by: 

These event generators have free parameters which must be adjusted for the event 

generator to describe experimental data. Tuning an event generator involves finding a set of 

model parameters that works well for an experiment.  

For tuning PYTHIA8, we are working in a very large parameter space, with order 10 total 

potentially relevant parameters. The tuning process becomes an optimization problem and 

will be done using the PROFESSOR (procedure for estimating systematic errors) method. 

First, the PROFESSOR method randomly samples the parameter space and runs the 

event generator at various points in it. With the output from these points, it runs a 

polynomial interpolation to approximate generator output.

We are using quadratic interpolation, as for each parameter our range is relatively 

narrowed down. Cubic interpolation is also possible but is significantly more 

computationally intensive. 

Additionally, the parameter space can be split into subspaces to reduce computation 

time. These subspaces are optimized individually and later combined. 

A goodness of fit function is used to compare the difference between the polynomial and 

experimental data. There are many functions that can be used for this, one of which is a 

χ2 fit:

The goodness of fit function is then optimized numerically, and the results are checked. 

Particles in mid-rapidity are typically detected in the experiment. To calculate the total cross section, event 

generators are used to find the ratio of total cross section, and mid-rapidity cross section. 

Using Rivet, we can write analyses to compare PYTHIA8 output to data for heavy-flavor processes. 

D0/0.565 = D*/0.244 

where ω are our weights, b is our bin, f(p) is our polynomial, R is our data, and Δ is the 

uncertainty. 

We work with the event generator PYTHIA8, which has been proven reliable, and the 

Monash tune works very well for energies found at the LHC. 

However, at RHIC energies it does not describe experimental data, specifically for heavy 

flavor processes. 

Our goal is to develop a tune of PYTHIA8 specifically for heavy flavor processes at RHIC. 

Rivet allows the following:

•  Preserving analyses and making them easier to maintain.

• Makes results easier to reproduce

• Gives a common testing ground to compare different generators

• Allows testing of event generators against many different data sets

We will use Rivet to compare PYTHIA8 output to data, in order to tune PYTHIA8.

A sample event from an event 

generator. Many processes lead 

to the blue final particles
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Abstract

Saturated Absorption Spectroscopy (SAS) is a technique used to

extract a precise transition frequency between atomic states that

reduces Doppler broadening. Thus, a laser can be locked to a sin-

gle atomic frequency.

Background

Doppler Broadening is the widening of spectral lines due to

the random motion of atoms in a gas. The atoms don’t travel in

one uniform direction, resulting in a wide frequency range.

Doppler broadening is typically two orders of magnitude larger

than a spectral line’s natural line width.

fDoppler = (v
c
)fOptical

Saturation occurs when a material is inundated with light such

the material no longer responds to additional stimuli.

SAS Overview

SAS aims to generate a high-resolution absorption profile of spec-

tral lines. The SAS technique overcomes Doppler broadening by

using a beam that saturates the atoms with light (pump beam) so

that no absorption occurs for atoms that have no Doppler shift

relative to the second beam (probe beam).

Figure 1. Atoms moving perpendicular to the beams experience no Doppler shift,

relative to them. These are the atoms that absorb probe light.

SAS Setup

Two counter-propagating beams that stem from the same

laser enter the cell of metastable helium atoms

Strong pump beam drives the cell with excess light, saturating

the atoms

Weak probe beam moves through the cell on the same plane,

and atoms moving perpendicularly to both beams transmit

light as a narrow signal.

Figure 2. Infrared SAS setup (schematic and lab view) [4]

Resulting Signal

The absorption profile when there is no pump beam present is

shown to have awideDopplerwidth. When there is a pump beam,

there is a spike at the resonant frequency because atoms with no

Doppler shift relative to the probe beam are not able to absorb.

Whenwe subtract the two plots, we obtain a singular narrow spec-

tral peak.

Figure 3. Absorption spectra without the pump beam [4]

Figure 4. Absorption spectra with the pump beam [4]

Application: Optical Force Experiments

Conservation of momentum deflects atoms when periodic pulse

sequences are applied. By stimulated emission, which occurs

when light collides with an excited atom, additional light is pro-

duced that’s moving with the same direction and energy. Optical

forces have the capacity to move matter in a precise manner. SAS

ensures that the frequency of the incoming beam is stabilized, al-

lowing for further refinement of its application.

Conclusion

With SAS’s ability to effectively stabilize a laser to a specific tran-

sition frequency, it has numerous applications in optical force ex-

periments, including ongoing ARP and STIRAP projects.
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RESULTS

Elliptical Galaxy Extraction
• Analyzed all known galaxies in DP1 release with needed photometry and shape columns for 

subsequent cuts: 
1. Bulge Dominant: Kept galaxies with bulge-to-total ratio ≥ 0.5 to favor early-type  

elliptical morphologies.
2. Bright: Required i-band Sérsic magnitude < 21.0 to select luminous, and 

subsequently hence high-mass, galaxies.
3. Large size: Required with Sérsic effective radius ≥ 25 pixels to bias toward 

extended, massive galaxies.
Cutouts and Source Galaxy Injection with SLSim
• We produce deep coadd cutout images of each candidate galaxy in the i-band.
• We generate a simulated background galaxy and lens it using a mass model derived from the 

real foreground galaxy [5].
• Simulations are then convolved with real DP1 PSFs and noise injected into the real 

deep-coadd cutout.

The Vera C. Rubin Observatory’s ten year long Legacy Survey of Space 
and Time (LSST) will utilize a 8.4-m Simonyi Telescope and 3.2-gigapixel, 
9.6 deg² camera to take hundreds of exposures of a ~18,000 deg² sky 
area. This unprecedented depth and coverage will enable innovative 
studies of cosmological phenomena, such as strong gravitational lensing. 
However, the first data release was captured using a lower resolution 
Commissioning Camera, which covers a limited sky area at a shallow 
depth. This limits the likelihood of observing real strong lensing, so we 
simulate it by inject background galaxies, lensed by mass models of real 
ellipticals, into our cutout images. These realistic injections will aid in 
preparing for true strong lensing analysis in future LSST data.  

• Gravity from a massive foreground object curves spacetime, bending 
and magnifying background light into arcs, rings, or multiple images.

• We focus on massive elliptical galaxies as their large mass is centrally 
concentrated, producing large Einstein radii and bright arcs, making 
these lenses the easiest to spot and model.

Elliptical Galaxy Sample Yield
• 1,374 of 255,525 galaxies matched our criteria 

for ellipticity, visualized in deep coadd images.

FUTURE WORK

Preparing for Future Data Releases: 
• Visual analysis of the simulated lens system 

allows for training to better identify strong 
lensing in the complete LSST survey. 

Gravitational lens geometry: α deflection angle; β true source angle; θ lensed image 
angle; Dₗ, Dₛ, Dₗₛ angular-diameter distances to lens, source, and between them. [4]

Figure 1. The Vera C. Rubin Observatory, located on the El Peñón peak of Cerro 
Pachón in Chile.  [1]

Source Galaxy Characterization via 
Simulations
• Simulations quantify lensing and observational 

biases, enabling recovery of true source sizes, 
fluxes, and morphologies.

• How well morphological features, such as rings 
or arcs, survive lensing and reconstruction 
informs expectations for real source imaging.
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Figure 3. The field of view of the ComCam 
compared to the full LSST camera. [3]

Figures 4 & 5. i-band Deep coadd cutout images of potential massive elliptical galaxies captured by the Vera C. 
Rubin Observatory. 

Realistic Strong Lensing Visualization
• We generated simulated source-deflector 

systems modeled after observed galaxies. 
• This produced realistic strong lensing 

morphology, matching the matching the PSF 
noise characteristics of true Rubin DP1 cutouts.

Figures 6 & 7. i-band Deep coadd cutout images of potential massive elliptical with simulated lensed source 
galaxies injected in.  

Figure 2. The LSSTComCam. [2]

A versatile strong-lensing simulation library used 
throughout this work. Contributions are 
welcome at the GitHub repository.

i-band Coadd at RA=58.8707, Dec=-49.2713 i-band Coadd at RA=49.8601, Dec=-25.4592

i-band Coadd at RA=58.8707, Dec=-49.2713
With Source Injection

i-band Coadd at RA=49.8601, Dec=-25.4592
With Source Injection
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The CMB Power Spectrum

The Cosmic Microwave Background (CMB) is the photons from the surface of last
scattering. In this signal, we see anisotropies that correspond to over- and under-
densities from the primordial Universe. This can be represented by the temperature-
temperature correlation function CTT

` , which quantifies the similarity of the temper-
atures of the CMB at two points in the sky separated by a given scale.

Image from [3]. The scaled CMB power spectrum D` = `(` + 1)C`/2π

Gravitational Lensing

The force of gravity, such as from a cluster of galaxies, bends spacetime, thus changing
the path light travels. We see light coming from a different place than it really is,
causing for example a smearing in the CMB signal. This effect dominates at large `,
or small scales.
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Image from [4]. Left is the unlensed temperature field of the CMB, and right is with an exaggerated lensing effect.

Motivation

Markov Chain Monte Carlo (MCMC) chains are used to infer cosmological parameters
from a dataset, but as the precision of future measurements demands more extensive
analysis, they are becoming increasingly computationally expensive. Using machine
learning to emulate CMB power spectra from CAMB data can reduce computation
time for MCMC chains.
In this project, we analytically scale the CMB lensing tail. By pre-processing in this
way, we can reduce the span of the data vectors, hopefully decreasing training time.

Cosmological Parameters

Cosmological parameters describe the evolution and current state of the Universe. In this project,
we examined the effect of gravitational lensing on the CMB considering five parameters: the
Hubble constant H0, the baryon density Ωbh

2, the cold dark matter density Ωch
2, the power of the

primordial curve perturbations As, and the scalar spectrum power-law index ns. We explored the
following parameter space:

Ranges for Cosmological Parameters

H0 (km/s/Mpc) Ωbh
2 Ωch

2 a = ln (As × 1010) ns
Minimum 50 0.007 0.04 1.61 0.8

Fiducial 80 0.0224 0.12 3.043 0.965

Maximum 67.4 0.035 0.23 3.6 1.2

Fitting Model & Optimization

The lensing tail is defined as the lensed power spectrum divided by the unlensed power spectrum:

L(`) =
C lensed
`

Cunlensed
`

. We model the lensing tail as:

L(`) = 1 + w(`)
[
β1 ·

( `
β2

)α − 1
]

w(`) =
1

1 + e−(`−β3)/β4
where w(`) is a weighting function. Here each of the parameters, β1, β2, β3, β4, and α, is allowed
to be a function of the cosmological parameters centered around the fiducial values (except H0).

Comparison with CAMB Lensing Tail

To create a fit, we employed linear and quadratic regression, using the Levenberg-Marquardt
algorithm. For example, for the behavior of β1 for changes in ns is:

β1(ns) = b1

(
ns

0.965
− 1

)
+ b2

(
ns

0.965
− 1

)2

We developed a fit using 600 random parameters in the selected range, with the lensing tail
behavior found using CAMB. The fit was trained to each parameter in isolation, then in pairs,
then altogether.
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CAMB Data
Fit

A plot of the fit for varied Ωch
2. As shown, the fit captures the order of magnitude of the tail, not its oscillatory behavior.

The overall mean error compared to CAMB for the 600 cosmologies used for training was 12.3%.
The error was low near the fiducial cosmology.

Effect of Rescaling

Scaling the lensing tail decreased the span of the vectors:
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A plot of CAMB data before and after dividing by the equation found for the lensing tail.

Conclusion

We have found that we can model the scale of the CMB lensing tail for pre-
processing in machine learning.
In the future, we will expand this study by using machine learning algorithms to
create a more precise fit as well as expand the parameter space.
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Future Work
Measuring the degree of CP violation in neutrino oscillation (𝛿𝐶𝑃) requires 
being able to discriminate between 𝜈 and ҧ𝜈 in the detector. Specifically, 
achieving 𝜈𝑒 / ഥ𝜈𝑒 separation would provide the strongest 𝛿𝐶𝑃 resolving power. 

Sub-GeV atmospheric 𝜈 energy reconstruction in LArTPCs for DUNE
Sanskar Jain1

1The University of Texas at Austin

ResultsMethods
The GENIE v3 Monte Carlo neutrino event generator was used to simulate 1000 𝜈𝑒-
Ar and ഥ𝜈𝑒-Ar charged current interactions each for 10 different values of 𝐸𝜈 from 
100 to 1000 MeV. The propogation of and energy deposition by the resultant 
particles through the LAr was simulated with GEANT4 via the edep-sim package.

(𝜈𝑒; 𝐸𝜈 = 200 MeV)

𝑅𝑐𝑎𝑙 =
𝐸𝑣𝑖𝑠

𝐸𝑎𝑣𝑎𝑖𝑙
=

𝐸𝑣𝑖𝑠

𝐸𝑑𝑒𝑝
⋅
𝐸𝑑𝑒𝑝

𝐸𝑎𝑣𝑎𝑖𝑙
= ൝

𝛽𝑅𝐶 ⋅ 𝑅𝑑𝑒𝑝 (charge)

(1 − 𝛽𝑅𝐶) ⋅ 𝑅𝑑𝑒𝑝 (light)

Both 𝑅𝐶 and 𝑅𝑑𝑒𝑝 vary for different particles at different energies, 
especially within the hadronic component, causing event-by-
event fluctuation in 𝑅𝑐𝑎𝑙.
Still, 𝐸𝜈 can be approximately reconstructed by dividing out the 
measured 𝐸𝑣𝑖𝑠 distribution by the peak value of the corresponding 
𝑅𝑐𝑎𝑙 distribution – at least scaling the peak in 𝐸𝑣𝑖𝑠 to match the 
peak in 𝐸𝑎𝑣𝑎𝑖𝑙 – before adding back the constant ~30 MeV nucleon 
removal energy. 

Research Goal
To characterize the performance of charge and light calorimetry in LArTPC 
in the reconstruction of sub-GeV incident 𝜈 energies, as well as explore 
avenues of 𝜈 / ҧ𝜈 discrimination.

𝜈𝑙

𝑙− 𝑝

𝑛

𝑊+

QES interaction Event display of 𝐸𝑣 = 700 MeV QES event w/ FSIDepiction of FSI[5]
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L1 =
𝐿

𝑅𝑐𝑎𝑙(light)

Q1 =
𝑄

𝑅𝑐𝑎𝑙(charge)

Q2 =
𝑄𝑒

𝑅𝑐𝑎𝑙 charge
𝑒 +

𝑄ℎ

𝑅𝑐𝑎𝑙 charge
ℎ

Q3 = 𝐸𝑑𝑒𝑝
tracks +

𝑄𝑒
dots

𝑅𝑐𝑎𝑙 charge
𝑒,dots +

𝑄ℎ
dots

𝑅𝑐𝑎𝑙 charge
ℎ,dots

(Q + L)1 =
𝑄+𝐿

𝑅𝑐𝑎𝑙(overall)

(Q + L)2 =
𝑄𝑒+𝐿𝑒

𝑅𝑐𝑎𝑙 overall
𝑒 +

𝑄ℎ+𝐿ℎ

𝑅𝑐𝑎𝑙 overall
ℎ

Relative Biases 𝐸𝑟𝑒𝑐−𝐸𝜈

𝐸𝜈

Resolutions 𝜎𝐸𝑟𝑒𝑐

𝐸𝑟𝑒𝑐

(𝜈𝑒; 𝐸𝜈 = 800 MeV)

(𝜈𝑒; 𝐸𝜈 = 200 MeV)

(𝜈𝑒; 𝐸𝜈 = 800 MeV)

Reconstructed Energy (𝐸𝑟𝑒𝑐) distributions for two sub-GeV 
𝜈𝑒 event samples 

Distributions of 𝐸𝑎𝑣𝑎𝑖𝑙, 𝐸𝑑𝑒𝑝, 𝑄, 𝐿 for two sub-GeV 𝜈𝑒 event samples Distributions of different 𝑅𝑐𝑎𝑙 for all 104 𝜈𝑒 events (100-1000 MeV)

Introduction
Neutrinos (𝜈) are weakly-interacting fundamental particles which oscillate 
between three ‘flavors’ – 𝜈𝑒 , 𝜈𝜇 , 𝜈𝜏 – as they travel. The extent of the ‘mixing’ 
between the three flavors and the rates at which they oscillate is determined 
by certain parameters – three mixing angles, the three neutrino mass 
differences, and more. 

to be done to improve reconstruction methods of 𝜈 events at the lower end of 
that energy range – sub-GeV events.

• When a 𝜈 interacts with an Ar nucleus in 
the tank, its 𝐸𝜈 is distributed among 
various emitted particles. 

• The charged particles deposit their 
energy by ionizing and exciting Ar atoms 
along their path. 

• The # of collected ionization 𝑒− acts as a 
measurement of the amount of energy 
deposited by each particle, from which 𝐸𝜈
can be reconstructed. 

• The same is true in principle for the # of

• No significant difference 
between track multiplicities in 
𝜈𝑒 vs ഥ𝜈𝑒 events was found, likely 
since FSI produce extra protons 
and neutrons with about equal 
likelihood.

• While the ‘blip’ multiplicity 
distributions are more distinct, 
they still cannot provide any 
definitive separation. 

• Separation based on the 
fraction of the visible energy in 
the hadronic system is another 
promising angle. 

identification. More importantly, the statistics of different event topologies 
would depend heavily on the specific FSI model used by the generator and 
may not correspond well with reality.

Comparing the frequencies of various event 
topologies among the generated 104 𝜈𝑒 and ഥ𝜈𝑒
events reveals significant differences, since 
the pre-FSI nucleon (surviving in ~30% of 
events) is always a proton if 𝜈𝑒 and a neutron 
if ഥ𝜈𝑒. However, this ignores systematics e.g.
threshold effects which can obscure particle

# tracks 
(>2cm)

# blips 
(<2cm)

𝐸𝑑𝑒𝑝
ℎ

𝐸𝑑𝑒𝑝

Comparing distributions of some variables over all 104 𝜈𝑒 and ഥ𝜈𝑒 events

Biases and resolutions of 𝐸𝑟𝑒𝑐 distributions for all 10 𝜈𝑒 samples

Breakdown of 𝐸𝑎𝑣𝑎𝑖𝑙 by FS 
particle for 𝜈e events

ProtoDUNE 
LArTPC[6]

LAr energy deposition[7]

The next-generation neutrino experiment 
DUNE (Deep Underground Neutrino 
Experiment) will perform precise 
measurements of these neutrino oscillation 
parameters, including the unknown 𝛿𝐶𝑃: the 
difference in how neutrinos and antineutrinos 
( ҧ𝜈) oscillate (CP violation)[1]. To do so requires 
determining the energy 𝐸𝜈 of detected 
neutrinos. So, the DUNE Phase-II Far 
Detector (FD) will consist of four 17 kt Liquid 
Argon Time Projection Chamber (LArTPC) Excavated DUNE cavern

scintillation 𝛾, but low photodetector efficiency and coverage 
have so far made LArTPC light calorimetry infeasible, an issue 
which the design of the DUNE Phase-II FD aims to resolve. This 
would provide a second, independent method of estimating 𝐸𝜈.[4]

• Interactions between cosmic rays and particles in the upper 
atmosphere are a continuous source of 𝜈 with a wide range of 
𝐸𝜈 spanning 0.1-100 GeV[3]. However, there is still much work

modules – tanks filled with liquid argon subjected to a uniform electric field.

Single-Phase LArTPC operating principle[2]
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Before a machine learning model can make predictions, it 

must first be trained on a dataset. The training datasets were 

generated using PYTHIA 8.315 to simulate p+p collisions at a 

center-of-mass energy of √s = 200 GeV.

Using Machine Learning to Improve 
Dilepton Signal Extraction

Gabriel Rodriguez, Bishoy Dongwi, Charles Naïm
Department of Physics and Astronomy

Initial attempts to use machine learning for classification involved a neural 

network; however, the neural network was inefficient due to its long runtime 

and poor accuracy. The approach was then changed from using a neural 

network to using gradient boosting with the XGBoost Python library. Gradient 

boosting is designed and optimized for classification, using iteration and 

several weak decision trees to make predictions. Shifting to gradient boosting 

increased accuracy from 20% to 90% and reduced runtime significantly.

The trained model is able to predict the process responsible 

for creating each dilepton pair, and classify the pairs by process 

for further analysis. Pictured above are the dilepton pairs plotted 

by process, first separated manually for comparison, and below  

separated by the model using its predictions.

Preliminary findings demonstrate that machine learning 

techniques can be effectively applied to signal processing, 

particularly for distinguishing signal data from background noise. 

The model developed and employed here effectively isolates 

signals across different processes, demonstrating reliable 

performance in signal extraction.

Introduction

Simulation

Methodology Model Prediction Results

Conclusion

c̅

c

Dilepton production within p+p collisions are the result of 

several different processes: the Drell Yan process, J/ψ, Y, open 

charm, open bottom, and light meson decays. Isolating individual 

processes to study is difficult due to signal overlap. In response to 

this problem, machine learning techniques can be used to 

improve signal-to-background data extraction. By training a 

machine learning model to categorize dilepton pairs, researchers 

can easily isolate individual processes despite the signal overlap. 

These new techniques will provide researchers with more 

accurate datasets, helping them to study these processes further.

Two datasets were generated using PYTHIA: one for training 

and one for testing. The training dataset was made by individually 

simulating each process, normalizing their contributions, and then 

combining the results to create a balanced dataset in which all 

processes are equally represented. In contrast, the test dataset 

was generated by simulating all processes simultaneously, 

creating a more realistic result that offers a more accurate 

assessment of the model's performance.

Model Training Results

Initial results showed that the model concentrated on the most frequent 

processes only, leading to lower accuracy for less represented ones. To 

address this, the training dataset was constructed with equal proportions of 

dilepton pairs from each process, aiming to promote balanced predictive 

performance. The test dataset, by contrast, was designed to reflect a realistic 

distribution of events, providing a more accurate assessment of the model’s 

effectiveness under practical conditions.
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