Sub-GeV atmospheric ν energy reconstruction in LArTPCs for DUNE Sanskar Jain¹ ¹The University of Texas at Austin ### Introduction Neutrinos (ν) are weakly-interacting fundamental particles which oscillate between three 'flavors' – ν_e , ν_u , ν_τ – as they travel. The extent of the 'mixing' between the three flavors and the rates at which they oscillate is determined by certain parameters - three mixing angles, the three neutrino mass differences, and more. The next-generation neutrino experiment DUNE (Deep Underground Neutrino Experiment) will perform precise measurements of these neutrino oscillation parameters, including the unknown δ_{CP} : the difference in how neutrinos and antineutrinos $(\bar{\nu})$ oscillate (CP violation)^[1]. To do so requires determining the energy E_{ν} of detected neutrinos. So, the DUNE Phase-II Far Detector (FD) will consist of four 17 kt Liquid Argon Time Projection Chamber (LArTPC) modules - tanks filled with liquid argon subjected to a uniform electric field. Single-Phase LArTPC operating principle^[2] When a ν interacts with an Ar nucleus in the tank, its E_{ν} is distributed among various emitted particles. - The charged particles deposit their energy by ionizing and exciting Ar atoms along their path. - The # of collected ionization e^- acts as a measurement of the amount of energy deposited by each particle, from which E_{ν} can be reconstructed. - The same is true in principle for the # of scintillation γ , but low photodetector efficiency and coverage have so far made LArTPC light calorimetry infeasible, an issue which the design of the DUNE Phase-II FD aims to resolve. This would provide a second, independent method of estimating E_{ν} . [4] Interactions between cosmic rays and particles in the upper atmosphere are a continuous source of ν with a wide range of E_{ν} spanning 0.1-100 GeV^[3]. However, there is still much work to be done to improve reconstruction methods of ν events at the lower end of that energy range - sub-GeV events. #### Research Goal To characterize the performance of charge and light calorimetry in LArTPC in the reconstruction of sub-GeV incident ν energies, as well as explore avenues of $\nu / \bar{\nu}$ discrimination. ### Methods The GENIE v3 Monte Carlo neutrino event generator was used to simulate $1000 v_e$ -Ar and $\bar{\nu}_e$ -Ar charged current interactions each for 10 different values of E_{ν} from 100 to 1000 MeV. The propogation of and energy deposition by the resultant particles through the LAr was simulated with GEANT4 via the edep-sim package. Both $R_{\mathcal{C}}$ and R_{dep} vary for different particles at different energies, especially within the hadronic component, causing event-byevent fluctuation in R_{cal} . Still, E_{ν} can be approximately reconstructed by dividing out the measured E_{vis} distribution by the peak value of the corresponding R_{cal} distribution – at least scaling the peak in E_{vis} to match the peak in E_{avail} – before adding back the constant ~30 MeV nucleon removal energy. #### Results Reconstructed Energy (E_{rec}) distributions for two sub-GeV ## Future Work Measuring the degree of CP violation in neutrino oscillation (δ_{CP}) requires being able to discriminate between ν and $\bar{\nu}$ in the detector. Specifically, achieving $v_e / \overline{v_e}$ separation would provide the strongest δ_{CP} resolving power. Comparing the frequencies of various event topologies among the generated $10^4 v_e$ and $\overline{v_e}$ events reveals significant differences, since the pre-FSI nucleon (surviving in ~30% of events) is always a proton if ν_{ρ} and a neutron if $\overline{\nu}_{\rho}$. However, this ignores systematics e.g. threshold effects which can obscure particle | FS topology | ν_e | $\bar{\nu_e}$ | |-------------|---------|---------------| | 1p0n0π | 2865 | 0 | | 1pXn0π | 2258 | 2571 | | 0pXn0π | 76 | 4028 | | π+ present | 917 | 41 | | π- present | 57 | 882 | identification. More importantly, the statistics of different event topologies would depend heavily on the specific FSI model used by the generator and may not correspond well with reality. - No significant difference between track multiplicities in v_{ρ} vs $\overline{v_{\rho}}$ events was found, likely since FSI produce extra protons and neutrons with about equal likelihood. - While the 'blip' multiplicity distributions are more distinct, they still cannot provide any definitive separation. - Separation based on the fraction of the visible energy in the hadronic system is another promising angle. Acknowledgements I would like to thank Dr. Riccio and Dr. Shi for all their mentorship and guidance on this project, as well as the Stony Brook REU program for the opportunity. #### References Breakdown of E_{avail} by FS particle for $\nu_{\rm e}$ events [1] A. Abed Abud et al 2024 JINST 19 P12005