

# Sub-GeV atmospheric $\nu$ energy reconstruction in LArTPCs for DUNE

Sanskar Jain<sup>1</sup>

<sup>1</sup>The University of Texas at Austin

### Introduction

Neutrinos ( $\nu$ ) are weakly-interacting fundamental particles which oscillate between three 'flavors' –  $\nu_e$ ,  $\nu_u$ ,  $\nu_\tau$  – as they travel. The extent of the 'mixing' between the three flavors and the rates at which they oscillate is determined by certain parameters - three mixing angles, the three neutrino mass differences, and more.

The next-generation neutrino experiment DUNE (Deep Underground Neutrino Experiment) will perform precise measurements of these neutrino oscillation parameters, including the unknown  $\delta_{CP}$ : the difference in how neutrinos and antineutrinos  $(\bar{\nu})$  oscillate (CP violation)<sup>[1]</sup>. To do so requires determining the energy  $E_{\nu}$  of detected neutrinos. So, the DUNE Phase-II Far Detector (FD) will consist of four 17 kt Liquid Argon Time Projection Chamber (LArTPC)



modules - tanks filled with liquid argon subjected to a uniform electric field.



Single-Phase LArTPC operating principle<sup>[2]</sup>

When a  $\nu$  interacts with an Ar nucleus in the tank, its  $E_{\nu}$  is distributed among various emitted particles.

- The charged particles deposit their energy by ionizing and exciting Ar atoms along their path.
- The # of collected ionization  $e^-$  acts as a measurement of the amount of energy deposited by each particle, from which  $E_{\nu}$ can be reconstructed.
- The same is true in principle for the # of

scintillation  $\gamma$ , but low photodetector efficiency and coverage have so far made LArTPC light calorimetry infeasible, an issue which the design of the DUNE Phase-II FD aims to resolve. This would provide a second, independent method of estimating  $E_{\nu}$ . [4]

Interactions between cosmic rays and particles in the upper atmosphere are a continuous source of  $\nu$  with a wide range of  $E_{\nu}$  spanning 0.1-100 GeV<sup>[3]</sup>. However, there is still much work

to be done to improve reconstruction methods of  $\nu$  events at the lower end of that energy range - sub-GeV events.

#### Research Goal

To characterize the performance of charge and light calorimetry in LArTPC in the reconstruction of sub-GeV incident  $\nu$  energies, as well as explore avenues of  $\nu / \bar{\nu}$  discrimination.





### Methods

The GENIE v3 Monte Carlo neutrino event generator was used to simulate  $1000 v_e$ -Ar and  $\bar{\nu}_e$ -Ar charged current interactions each for 10 different values of  $E_{\nu}$  from 100 to 1000 MeV. The propogation of and energy deposition by the resultant particles through the LAr was simulated with GEANT4 via the edep-sim package.





Both  $R_{\mathcal{C}}$  and  $R_{dep}$  vary for different particles at different energies, especially within the hadronic component, causing event-byevent fluctuation in  $R_{cal}$ .

Still,  $E_{\nu}$  can be approximately reconstructed by dividing out the measured  $E_{vis}$  distribution by the peak value of the corresponding  $R_{cal}$  distribution – at least scaling the peak in  $E_{vis}$  to match the peak in  $E_{avail}$  – before adding back the constant ~30 MeV nucleon removal energy.



#### Results

Reconstructed Energy  $(E_{rec})$  distributions for two sub-GeV





## Future Work

Measuring the degree of CP violation in neutrino oscillation ( $\delta_{CP}$ ) requires being able to discriminate between  $\nu$  and  $\bar{\nu}$  in the detector. Specifically, achieving  $v_e / \overline{v_e}$  separation would provide the strongest  $\delta_{CP}$  resolving power.

Comparing the frequencies of various event topologies among the generated  $10^4 v_e$  and  $\overline{v_e}$ events reveals significant differences, since the pre-FSI nucleon (surviving in ~30% of events) is always a proton if  $\nu_{\rho}$  and a neutron if  $\overline{\nu}_{\rho}$ . However, this ignores systematics e.g. threshold effects which can obscure particle

| FS topology | $\nu_e$ | $\bar{\nu_e}$ |
|-------------|---------|---------------|
| 1p0n0π      | 2865    | 0             |
| 1pXn0π      | 2258    | 2571          |
| 0pXn0π      | 76      | 4028          |
| π+ present  | 917     | 41            |
| π- present  | 57      | 882           |

identification. More importantly, the statistics of different event topologies would depend heavily on the specific FSI model used by the generator and may not correspond well with reality.

- No significant difference between track multiplicities in  $v_{\rho}$  vs  $\overline{v_{\rho}}$  events was found, likely since FSI produce extra protons and neutrons with about equal likelihood.
- While the 'blip' multiplicity distributions are more distinct, they still cannot provide any definitive separation.
- Separation based on the fraction of the visible energy in the hadronic system is another promising angle.



Acknowledgements

I would like to thank Dr. Riccio and Dr. Shi for all their mentorship and guidance on this project, as well as the Stony Brook REU program for the opportunity.

#### References

Breakdown of  $E_{avail}$  by FS

particle for  $\nu_{\rm e}$  events

[1] A. Abed Abud et al 2024 JINST 19 P12005