

Physics Motivation for an EIC fixed target program from the STAR BES perspective (my personal view)

Helen Caines (she/her), Wright Lab, Yale University

Well known but worth repeating

iTPC:

|y| < 1.5

 $p_T > 60 \text{ MeV/c}$

Improved dE/dx

eTOF:

Wide PID range

EPD:

Triggering

EP resolution

Critical features for future nFXT experiment(s)

Max $\sqrt{s_{NN}} = 17.3 \text{ GeV}$

ŀ	√s _{NN} (GeV)	Beam Energy (GeV/nucleon)	Collider or Fixed Target	y center of mass	μ _B (MeV)	Run Time (days)	No. Events Collected (Request)	Date Collected
ı	200	100	С	0	25	2.0	138 M (140 M)	Run-19
	27	13.5	С	0	156	24	555 M (700 M)	Run-18
	19.6	9.8	С	0	206	36	582 M (400 M)	Run-19
	17.3	8.65	С	0	230	14	256 M (250 M)	Run-21
	14.6	7.3	С	0	262	60	324 M (310 M)	Run-19
	13.7	100	FXT	2.69	276	0.5	52 M (50 M)	Run-21
	11.5	5.75	С	0	316	54	235 M (230 M)	Run-20
	11.5	70	FXT	2.51	316	0.5	50 M (50 M)	Run-21
	9.2	4.59	С	0	372	102	162 M (160 M)	Run-20+20b
	9.2	44.5	FXT	2.28	372	0.5	50 M (50 M)	Run-21
	7.7	3.85	С	0	420	90	100 M (100 M)	Run-21
	7.7	31.2	FXT	2.10	420	0.5+1.0+	50 M + 112 M + 100 M (100	Run-19+20+21
	7.2	26.5	FXT	2.02	443	2+Parasitic	155 M + 317 M	Run-18+20
	6.2	19.5	FXT	1.87	487	1.4	118 M (100 M)	Run-20
	5.2	13.5	FXT	1.68	541	1.0	103 M (100 M)	Run-20
	4.5	9.8	FXT	1.52	589	0.9	108 M (100 M)	Run-20
	3.9	7.3	FXT	1.37	633	1.1	117 M (100 M)	Run-20
	3.5	5.75	FXT	1.25	666	0.9	116 M (100 M)	Run-20
	3.2	4.59	FXT	1.13	699	2.0	200 M (200 M)	Run-19
_[3.0	3.85	FXT	1.05	721	4.6	259 M -> 2B(100 M ->	Run-18+21

Motivation for Continued CP and Ordered Phase Transition Studies

Theory - current status

Net-proton fluctuation final results

N.B. Different rapidity range for FXT

Precision final measurements from BES-II:

 $\sqrt{\text{s}_{\text{NN}}} = 7.7-27 \text{ GeV (collider)}$ $\sqrt{\text{s}_{\text{NN}}} = 3.2-3.9 \text{ GeV (FXT)}$

Still to come:

√s_{NN} = 4.5 GeV (acceptance gaps)

 $\sqrt{s_{NN}} = 3 \text{ GeV } (-0.5 < y-y_{cm} < 0.5, and 2B events)$

 $\sqrt{s_{NN}} = 3.2-3.9 \text{ GeV}$:

Consistent with UrQMD baseline

No data in the "gap" - opportunity for nFXT program

Zooming in on higher beam energy region

2-5σ deviations non-CP baselines around √s_{NN} ~20 GeV

Theory shows "nothing exciting" in this range

What's happening? Need more dynamical CP calculations

nFXT possible to $\sqrt{\text{s}_{\text{NN}}} = 17 \text{ GeV}$

Nature of medium produced

Cumulant ratios sensitive to nature of phase transition

√s_{NN} =7.7-200 GeV: falling trend with rising order - trend predicted by Lattice

 $\sqrt{s_{NN}} = 3 \text{ GeV (FXT)}$: rising trend with rising order - trend in agreement with UrQMD

LQCD: HotQCD, PRD101,074502 (2020) FRG: Wei-jie Fu et. al, PRD 104, 094047 (2021) STAR: PRL 130, 082301 (2023) STAR: PRL 127, 262301 (2021) STAR: PRL 126, 092301 (2021) STAR: PRC 104, 024902 (2021) nFXT: precision study of √s_{NN} ~10 GeV

Softening of Equation of State

Fermi-Landau initial conditions with ideal hydro expansion: $c_{s^2} = \partial P/\partial \epsilon$

 $c_s^2 = 0$ for a sharp phase transition

Softest Point: minimum in c_s²

$$\frac{dn}{dy} = \frac{Ks_{NN}^{\frac{1}{4}}}{\sqrt{2\pi\sigma_{y}^{2}}} e^{-\frac{y^{2}}{2\sigma_{y}^{2}}} \quad \sigma_{y}^{2} = \frac{8}{3} \frac{c_{s}^{2}}{1 - c_{s}^{4}} \ln\left(\frac{\sqrt{s}}{2m_{N}}\right)$$

Minimum observed at $\sqrt{s} = ~7$ GeV Minimum in the speed of sound? $c_s^2 \sim 0.26$

Indication of softening of EoS?

E895: J. L. Klay et al, PRC 68, 05495 (2003) NA49: S. V. Afanasiev et al. PRC 66, 054902 (2002) BRAHMS: I.G. Bearden et al., PRL 94, 162301

NA61/SHINE see minima in similar place for pp data

Confirm c_s in other ways?

Directed flow

Sensitive probe of early time interactions and EOS

Kaons:

- sign change in FXT region
- where exactly does this occur?
- spectator shadowing at play?

ф:

- unexpectedly large v₁ in FXT region
 - similar magnitude to p and \(\Lambda \)

Mass effect not baryon/meson?

nFXT fills the gap

Motivation for Continued QGP Formation Studies

Disappearance of partonic collectivity

Particles and antiparticles no longer consistent with single-particle NCQ scaling for √s_{NN} < 7GeV

Dominance of hadronic interactions at $\sqrt{s_{NN}} < 3.5$ GeV Mixing of transported and produced quarks changing

nFXT what energy does NCQ return? Also particle vs anti-particle

Disappearance of partonic energy loss

For √s_{NN} > 27 GeV suppression observed

Disappearance of partonic energy loss

For √s_{NN} > 27 GeV suppression observed

Differences for baryons and mesons

Disappearance of partonic energy loss

For √s_{NN} > 27 GeV suppression observed

Differences for baryons and mesons

nFXT improve baseline

New \$\phi\$ data indicate mass not baryon/meson effect?

Disappearance of partonic energy loss?

Is flow/Cronin hiding E_{loss}?

Interesting idea:

For each energy normalize to peripheral data

High p_T suppression in central events for all energies down to √s_{NN} ~14.5 GeV

Many results reveal something interesting in $\sqrt{s_{NN}} = 10-20$ GeV range

nFXT: Where to other systems, especially pA sit?

Energy loss vs energy density

Link between entropy and charged particle density very sensitive to viscosity

More careful calculation needed

E_{Loss} from shift of p_T spectra

Approximate energy density from Glauber and charged particle yields

Given number of approximations strong correlation between E_{Loss} and ϵ_{init} over different species and collision energies

Partonic energy loss scales with initial energy density

Evidence of jet quenching in O+O (see QM and IS)

nFXT: Does scaling breakdown?

Initial temperature of medium

Thermal di-electrons:

LMR: Transition thermal radiation

IMR: QGP thermal radiation

Need to cross into QGP regime to see CP

√s_{NN} < 20 GeV possible with nFXT?

Normalized dilepton low mass excess

BES-I:

- No clear √s_{NN} dependence
- Well described by in-medium ρ + QGP emission models

BES-II + HADES

- Decrease below √s_{NN} ~ 10 GeV

Normalized dilepton low mass excess

BES-I:

- No clear √s_{NN} dependence
- Well described by in-medium ρ + QGP emission models

BES-II + HADES

- Decrease below √s_{NN} ~ 10 GeV

At about same location:

- Baryon density rises
- -T_{ch} drops

nFXT: With precision data can we disentangle different medium effects on LME?

Motivation for Continued Particle Production Studies

Renewed interest in baryon stopping/transport

FXT data $Au+Au\sqrt{s_{NN}} = 3$ GeV: Centrality dependence of proton rapidity distribution width

Proton peak shifts away from mid-rapidity for more peripheral collisions

- less stopping

Renewed interest in baryon stopping/transport

FXT data $Au+Au\sqrt{s_{NN}} = 3$ GeV: Centrality dependence of proton rapidity distribution width

Proton peak shifts away from mid-rapidity for more peripheral collisions

- less stopping

Define stopping, δy , via the shift of the participant proton peak from beam rapidity

Average loss of 0.19 ± 0.01 units of rapidity per nucleon-nucleon collision

consistency with other experiments at similar energies

In combination with UPC - enhance understanding of baryons

Trajectory through the phase diagram?

Next step: Compare mid-rapidity/low \(\struct step \) and high rapidity/high \(\struct step \)

Chemical freeze-out parameters match but initial conditions differ.

Can we see the difference imprinted elsewhere?

Kinetic freeze-out of light nuclei

At $\sqrt{s_{NN}} = 3 \text{ GeV}$

Yields of proton & light nuclei well described by models

Significant centrality and rapidity dependence

Kinetic freeze-out of light nuclei

At
$$\sqrt{s_{NN}} = 3 \text{ GeV}$$

Yields of proton & light nuclei well described by models

Significant centrality and rapidity dependence

Effective average kinetic freeze out parameters extracted using cylindrical blast wave fits

 $\sqrt{s_{NN}}$ = 3 GeV different trend to higher energies. Different EoS?

Effective $T_{kin}(d) > T_{kin}(p)$ $\beta_T(d) < \beta_T(p)$

Light nuclei collective motion

Light nuclei collective motion

A-scaling at $\sqrt{s_{NN}} = 3 \text{ GeV}$

Reasonable for v_1 and $v_3\{\Psi_1\}$ at $y_{cm}<0.5$ Breaks for v_1 and $v_3\{\Psi_1\}$ $y_{cm}>0.5$

v₁ of hypernuclei similar trend

Consistent with late-stage coalescence - high y nuclear fragments

Y-N interaction

Critical to inform neutron star EOS

Probe using hypernuclei

- Thermal model over predicts all yields
- Evidence of excited states
- Extraction of BE possible in high µ_B region

nFXT region where production maximal

Other Open Questions

Direct virtual photons

Yield scales with multiplicity from √s_{NN} =14.6 GeV - 5 TeV

 $\alpha = 1.43 \ 0.04 \ 0.02$

Scaling continues at lower collision energy?

What about other beam species?

Resolve offset between PHENIX and STAR

Asymmetric systems with nFXT?

Longitudinal decorrelation

Strong decorrelation at RHIC energies (even stronger for r₃)

Strongest in central events Increasing with decreasing collision energy AMPT too strong

3D dynamics important

What is the Magnetic Field Strength

$$(P_{\bar{\Lambda}} - P_{\Lambda}) \approx \frac{2|\mu_{\Lambda}|B}{T}$$

$$T = 150 \text{ MeV}$$

$$\mu_{\Lambda} = -1.93 \times 10^{-14} \text{ MeV/Tesla}$$

T - Temperature of emitting source μ_{Λ} - magnetic moment of Λ

No global polarization splitting observed

Upper limit on late stage B-field B < 10¹³ Tesla (95% confidence)

Must be a magnetic field - dies away too quickly? Can nFXT detect it? More theory needed

Summary

STAR BES-II

RHIC and STAR operated beyond our imagination Motivating measurements achieved with precision stated

Despite incredible success of BES-II program many open questions remain and others have been generated

nFXT program will provide multiple unique opportunities over and above those from CBM, SHINE, HADES, NA60+

Possibility to answer what happens in the gap, provide pp(?) and pA baselines, other species

END IS HERE

The upgrades

FXT proton acceptance

Red box: Standard analysis window

 $0.4 < p_T < 2 \text{ GeV/c}$

 $-0.5 < y-y_{cm} < 0$

Near-full acceptance to 4.5 GeV

Top energies need to move away from mid-rapidi

Critical for methodology comparison

Cumulants vs Acceptance

Widening y, p_T windows of measurement enhances potential critical contributions

Deviation from UrQMD increases with y acceptance and near 20 GeV

Light nuclei Ratio

 $N_t N_p / N_d^2$, sensitive to fluctuations of the local neutron density shows enhancements relative to the coalescence baseline with a significance of 2.3σ and 3.4σ respectively in 0 –10% central Au+Au collisions at 19.6 and 27 GeV.

Constrain production dynamics of light nuclei and understanding of the QCD phase diagram

Strangeness production

Things change at √s_{NN} = 3 GeV

Collision energy:

below threshold for Ξ

very close to threshold for φ

Small strangeness correlation radius preferred $r_c \le 4.2 \text{ fm}$

Local strangeness conservation is crucial

Pata compilation: arXiv: 2108.00924 TAR: Phys. Rev. C 102 (2020) 34909 IADES: Eur. Phys. J. A (2016) 52: 178 IrQMD¹: Prog. Part. Nucl. Phys. 41 1998) 225-370 IrQMD²: J. Phys. G: Nucl. Part. Phys. 3, 015104 (2015)

CE cannot simultaneously describe φ/K- and φ/Ξ- ratios significant change in strangeness production at this low energy

MASH: Phys. Rev. C 99, 064908

Rapidity dependence of anti-baryon enhancement

p_T (GeV/c)

Anti-Baryon/Meson ratio increases with:

- collision energy
- centrality
- rapidity

Increased coalesence or fragments at higher rapidity?

Significant enhancement above cocktail

Something interesting occurring in both mass ranges for several collision energies

Hypernuclei kinematics

Including \(\text{reduces} < p_T > \)
Mass number scaling preserved

Hypernuclei kinematics

Including \(\text{reduces} < p_T > \)
Mass number scaling preserved

S₃ increases with √s_{NN}
Increasing feed-down to
³He from unstable nuclei?
Suppression at low √s_{NN}?

Hypernuclei kinematics

Including ∧ reduces <p_T> Mass number scaling preserved

S₃ increases with √s_{NN} Increasing feed-down to ³He from unstable nuclei? Suppression at low √s_{NN}? reasonable description

Different decay channels give consistent distribution JAM + Coalescence give

Adding a hyperon enhances sensitivity

Excited hypernuclei are also created

Evidence of formation of excited hypernuclei states in heavy ion collisions

Correlations with hyperons

p-Λ and d-Λ correlations explore: N-(-N)Y interactions and hyper nuclei structure

R_G: Spherical Gaussian source

size

f₀: scattering length

d₀: effective range

Expect different f₀ and d₀ from difference spin states

Separating source size and FSI

$$R_G(p-\Lambda) > R_G(d-\Lambda)$$

10x stats still to come

- Spin-avg for $f_0 \& d_0$ p- system
- $f_0 = 2.32^{+0.12}_{-0.11}$ fm, $d_0 = 3.54^{+2.7}_{-1.3}$ fm
- Separate two spin states in d-Λ
- $f_0(D) = -20^{+3}_{-3}$ fm, $d_0(D) = 3^{+2}_{-1}$ fm
- $f_0(Q) = 16^{+2}_{-1} \text{fm}, \ d_0(Q) = 2^{+1}_{-1} \text{fm}$

HBT - 3D femtoscopy

Radii:

Increase with collision energy
Decrease with transverse mass
Larger for π than K
UrQMD reasonable agreement

HBT - 3D femtoscopy

Radii:

Increase with collision energy
Decrease with transverse mass
Larger for π than K
UrQMD reasonable agreement

Tension emerging with E895

Slowly increasing volume from STAR and HADES

3rd body Coulomb interactions

- Isolate 3rd body Coulomb effect:
 - Extract Z_{res}^{eff} from $\pi + /\pi yield$ ratio,
 - Calculate Δp needed to produce the 3rd body Coulomb effect in UrQMD
 - Get correlation functions with the momentum shift

Measured femtoscopic source radii different for π + π + and π - π - pairs

3rd body Coulomb effect or isospin of the system?

- Correlation functions consistent after removal of 3rd body
 Coulomb effect
- No significant isospin contribution seen

Medium modification of J/ψ

New data at 14.6, 19.6 and 27:

Confirm no significant energy dependence at RHIC energies

Interplay of dissociation, regeneration, CNM, spectra shape

Medium modification of J/ψ

New data at 14.6, 19.6 and 27:

Confirm no significant energy dependence at RHIC energies

Interplay of dissociation, regeneration, CNM, spectra shape

More suppression at RHIC due to much less regeneration in the medium

Limiting fragmentation

Results extended to more centralities

Scaling of v₁ observed for all centralities Nuclei fragments contribute to v₁

Limiting fragmentation" a dynamical phenomenon

Change in since of net proton v1

Change of sign in the slope of $\frac{dv_1}{dy}$ (for baryons, or net-baryons) as a probe to the softening of EoS and/ or first-order phase transition;

If a system undergoes a first-order phase transition, due to formation of mixed phase, pressure gradient is small (minimum in the $\frac{dv_1}{dy}$ slope parameter);

v₁ slope and v₂ sign change

- Negative v₁ slope and large positive v₂ in Au+Au collisions at high beam energies.
- Positive v_1 slope and negative v_2 for all measured particles in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV.
- hadronic transport model JAM and UrQMD with baryonic mean-field interactions qualitatively describe the data.
 - → EoS dominated by baryonic interactions at 3 GeV

E877: Phys. Rev. C 56, 3254-3264 E895: Phys. Rev. Lett.85, 940

FOPI: Phys. Lett. B 612, 173

STAR: Phys. Lett. B 827, 137003, (2021)

V₂ light nuclei

- 1) Light-Nuclei elliptic flow v₂ measurements in 10-40% mid-central Au+Au Collisions at √s_{NN}= 3.0, 3.2, 3.5, 3.9 GeV
- 2) Mid-rapidity elliptic flow results indicate an out-of-plane expansion ($v_2 < 0$) at the lowest collision energy, whereas in-plane expansions ($v_2 > 0$) are evident at higher collision energies

Flow of light nuclei from coalesence - AMPT

V₁ and EM Fields

Quarks in the expanding medium experience different forces due to

- 1.Hall Effect: $F = q(v \times B)$
- 2.Coulomb Effect: E generated by spectators
- 3. Faraday Induction: Generated by decreasing magnetic field as spectators fly away

[U. Gürsoy et al. PRC 98,055201, PRC 89 054905]

These EM forces give opposite v_1 to particles with opposite charges and thus $v_1(h+)-v_1(h-)$ is sensitive to EM fields

Transported quark effect: Quarks transported from incoming nuclei can have different v₁ than that of quarks produced in the interaction region. It can affect hadrons having u and d quarks.

Directed flow difference

Difference in particle-anti-particle slope:

Increases with decreasing centrality - Higher B-field Increases with decreasing beam energy - Increasing crossing time Has species dependence - transported vs created quarks