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LHCb as fixed gas target experiment

The original idea was to inject gas into the beam pipe o have a precise luminosity
measurement via beam-gas imaging technigue
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LHCb as fixed gas target experiment
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LHCb as fixed gas target experiment
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Since 2022 - SMOG2, the first LHC internal
stforage cell
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The beam aperfure Is one of the main parameters to be considered

Minimum SC Aperture, various scenarios, 0.1 mm offset
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The choice of an openable cell allows for:
-a large diameter during the injection and funing phases, when the beam traverse size Is

large (Ebeam=450 GeV)
-a small diameter during the lumi run phase (Eceam=6.8 TeV)

The LHC requirement is to stay at least 15 ¢ from the beam transverse size

30 mm (open) 5 mm (closed) radius x 200 mm length
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The alignment is a crucial part

Table 9: Final position of the SMOG?2 and its offset to the nominal position

Excellent alignment reached:
maximum offset of 0.25 mm over 2
mm of available range

Position of SMOG2 Offset to nominal
Name | Xphys [m] | Yphys [m] | Zphys [m] | dXphys [mm] | dYphys [mm] ||dZphys [mm]
S E -0.00142 | -0.00017 | -0.61739 -0.25 0.14 0.11
S S -0.00136 | -0.00040 | -0.33739 -0.19 -0.14 0.11
S _ROLL | -0.00082 0.99983 | -0.61658
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The alignment is a crucial part

Table 9: Final position of the SMOG?2 and its offset to the nominal position

Excellent alignment reached:
maximum offset of 0.25 mm over 2
mm of available range

Since new material has been infroduced along the beam line,
It Is Important fo evaluate the Machine Induced Background

Main SOUrces:

-beam-gas interactions in long straight sections leading up to the experiment;
-Inferactions with the tertiary collimators located upstream the experiment

The MIB alone shows a maximum increase of +16%, when properly scaled
and embedded into the beam-beam collisions, the effect of the storage cell

becomes negligible (~0.1%)

Position of SMOG2 Offset to nominal
Name | Xphys [m] | Yphys [m] | Zphys [m] | dXphys [mm] | dYphys [mm] ||dZphys [mm]
S E -0.00142 | -0.00017 | -0.61739 -0.25 0.14 0.11
S S -0.00136 | -0.00040 | -0.33739 -0.19 -0.14 0.11
S _ROLL | -0.00082 0.99983 | -0.61658
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Gean4+Epost+Pythia8 embedded in a machine code
(IEEE Trans. Nucl. Sci. 59 (2011) 16 )



Temperature Issue

Simulation show that the local power loss could reach up to 1.5 kW if the worst mode is hit by one the main
spectral lines of the LHC beam

However, based on simulation and mockup measurements, we found that in the pessimistic case of 20 MHz
resonance shifts, a power dissipation in the cell could reach 14 W. This can increase up to a factor of 4 in case
the two beams create the same simultaneous dissipation (extremely unlikely)

we found that the equilibrium
temperature cell must be around 30-40 C
depending on the beam conditions

The equilibrium temperature can be calculated by considering:

heating power dissipation as

o _126-c [7 T
cell = 472bo32 \| so, N,f.

and the Stefan-Boltzmann dissipation formula

rd

HORTDRGZ0 15 cell monitored by 5 thermocouples
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N case of sudden temperature increase, the procedure would be to slightly open the storage cell to avoid
Nitting the e.m. modes of the beam and to allow the cell to cool down.
-rom experience, we know that we are very far from this critfical condition

The importance of measuring the temperature for the luminosity determination will be discussed in Saverio’s talk
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The LHCb detector

e | HCb Is a general-purpose forward The LHCb Run 3 detector
spectrometer, fully instrumented in 2 <5 <5,

and optimised for ¢ and » hadron detection
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The Alice experience

Extraction of the beam halo to collide with the wire target
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The LHCb Gas Feed System

LHCb experimental vacuum system Q1-Q1 including Vertex locator (VELO) vacuum system
Configuration-with Storage cell connected via SMOG2 Gas Feeding System (GFS)
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PHYSICAL REVIEW

The LHCb Gas Feed System i1 2024

 Advanced Gas Feed System for the gas injection
the beam lifetime ("™ <2000 days , 7f°Ar ~ 500 h)
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All the detalls of the data acquisition, results and experience gained from

the data taking will be presented by Saverio in his talk later this afternoon

SMOG?2 is a very interesting project itself, however, the

iInstallation of an unpolarised gas target also proves the
technical feasibllity of implementing this technigue at the

LHC ... theretore we can proceed to the next step

L+ C

00 Spin



L‘\I*C a polarized target aft % Polarized target

spin

Successful fechnology based on
HERA and COSY experiments ... but an extensive R&D is also required
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LHCSpIﬂ experimeﬂ’r(ﬂ SeTUp Target density (H) = 3.7 x 1013cm-2
LHC beam (Runb) = 6.8 x 1018 p s

Lon = 2.5 x 1032 cm-2 s-1

| v
=J Dissociator
/h Negligible impact on the LHC beam lifetime, rgeaf’fl —as ~ 2000 days
e to be compared with the typical 10h of the beam lifetime
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I_H C . _|_ _|_ Channel Events / week | Total yield
sSpin event rates T/ — ptp~ 1.3x 100! | 1.5 x 10°
D - K-t 6.5 x 107 7.8 x 107
V(28) — ptp 2.3 x 10° 2.8 x 107
J/WJ /Y — pTu utu~ (DPS) 8.5 1.0 x 103
. J/WJ/Y — pTuptu~ (SPS) 2.5 x 101 3.1 x 103
Precise spin asymmetry on J/'¥ — pu"u~ and D — K™ 7™ Drell Yan (5 < M,,,, <9 GeV) 7.4 x 10 8.8 x 10°
for pH' collisions in just few weeks T — ptp” 5.6 x 10° 6.7 x 10°
AY — pK T 1.3 x 10° 1.5 x 10%

Statistics further enhanced by a factor 3-5 in LHCb upgrade |

minutes of data-taking / polarity [gas=H, 8 =3.7e + 13 cm~?] minutes of data-taking / polarity [gas=H, 6 =3.7e + 13 cm~?]
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3 f —— P=0.90%0.01 (Ay = 0.11)
0.015 - J/¥ Lﬁ C P=0.70%+0.07 (Ay = 0.14)
e+ spin - — P=0.70£0.20 (Ay = 0.14)
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Reconstructed J/y—-u ™ u~ events / polarity 10000 20000 30000 40000 50000

Reconstructed J/y—»u * u~ events / polarity

reconstructed particles
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Comparing J/I¥Y — u u~

LHCspin strength point and uniqueness will
be heavy flavours, mostly unexplored by
existing facilities with the exception of the
JI'Y, for which measurements have been
performed at PHENIX and COMPASS:

e PHENIX: ~ 21k signal candidates (2006 +
2008 data) at LHCspin they can be

collected in ~10 minutes (cell) or ~7 hours
jet)

e Mass resolution: LHCb nominal
6, =~ 13 MeV at the mass J/¥Y and

= 42 MeV at the mass Y mass

e Can also measure excited states &
heavier mesons

PHENIX: 2006 and 2008 data
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S S
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= 0~ 150 MeV ()
'“" ///// 2006
13 2 25 3[5 """ r B
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2
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we can greatly complement these results with high precision
measurements and much larger kinematic coverage!
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Quark TMDs

quark pol. Transv. polarized Drell-Yan
U L. T
. He—>
S |U| fi hy
g L 91L | hit |
(é Jir | 917 | ha. hiLT Ha ’

* Sensitive to quark TMDs through TSSAs

1 ng — Uéy

ADY
l
P UDY + Opy
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_LHCb has excellent u-ID &
- reconstruction for u*u-

e Extraction of gTM

e Verify sign change of Sivers function wrt SIDIS  fi- |
e Test flavour sensitivity using both H and D fargets

q -1q 1q q
A ”"4"5 o 21 ®-fl'1" Asin(2¢>-¢5) hl X 111
el < d UT ~ -] o IR
J1 ®741 -fl ®fl

(¢p: azimuthal orientation of lepton pair in dilepton CM )

dominant: g(x;,,,,) + q(Xee) = HTH™

suppressed: g(xypum) + G(Xigrge) = HTHT

Ds does not require knowledge of FF

Tlpy = flT |SIDIS
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gluon pol.

Gluon TMDs
U | Circularly | Linearly
: : —_ . 14
Theory framework well consolidated, but experimental 2 (U f | hy
: - .
access still extremely limited § |L g | hig
- 1g g 9 1,19
=z | T Jir Yir hi, hir
The most efficient way to access the gluon dynamics inside the
oroton at LHC is to measure heavy-quark observables. ; AN ; 0
At LHC heavy quarks are produced by the dominant gg fusion . G, I =
Process
D, Do
Inclusive quarkonia production in (un)polarized pp interaction Ug 4 ]’/ V. v
turns out to be an ideal observable to access gTMDs , ) -

e Can look at associate quarkonia production, where only relative
gr needs to be small (e.g. pp' = J/'¥ + J/¥ + X)

TMD factorisation requires g;(Q) < M,:

e Due to the large masses, easier in case of bottomonium where

factorisation can hold at large ¢,
28



gluon pol.

Gluon TMDs
U | Circularly | Linearly
: : —_ 14
Theory framework well consolidated, but experimental 2 U A hy”
: . & g Lg
access still extremely limited 8 L G | Mg
2 Llg g 9 3,419
= | T | fir Yr hi, hit
The most efficient way to access the gluon dynamics inside the
oroton at LHC is to measure heavy-quark observables. ¢ & rren 0
A H( hed N1 1Ak Are NDroo ~Yala N Jdominant Ao TaYa el W 5
0.8
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by, e.q., di — J/¥ or Y production  -02¢
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| -04 -
il EPOS+Pythia MC ’
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-08 —————~t——— 1 5q5L— — —
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Probing the Sivers function

rD° D°

U g1 | 6 4/'#"#
9D ..
o'

—_ .

nucleon pol.

gluon pol.

U  Circularly | Linearly
Ul fi hy?
L 911 | hiL |
T|fid| or | b

Can be accessed through the Fourier decomposition of the TSSAs for Inclusive meson production

Sensitive to color exchange among IS and FS, and gluon OAM

lo'—0

AN

 Po'+4o

l
) X [f1J7-"g (xa'kla)®fg (xb, k.Lb)®d0'gg_,QQg] Sin ¢S + ...

Shed light on spin-orbit correlation of unpolarized gluons inside a fransversely polarized proton
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Spin physics In heavy-ion collisions

eprobe collective phenomena in heavy-light systems through ultra-
relativistic collisions of heavy nuclei with frasv. pol. deuterons

e polarized light target nuclel offer a unique opportunity to control
the orientation of the formed fireball by measuring the elliptic flow
relative to the polarization axis (ellipticity).

unpolarized d+A

Vz{wp}=0 VZ{QP}<0 Vz{@p}>0
Unpol. deuterons: the  j; = +1 — prolate fireball ~ j3 = 0 — oblate fireball
fireball is azimuthally stretched along the pol. corresponds to v, > 0

symmetric and v, = 0. axis, correspondsto v, < 0
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Predictions for LHC FT kinematics
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Spin physics In heavy-ion collisions

Single spin asymmetries in ultra-peripheral p'A — hAX collisions

to test the assumed dominance of the contribution from twist-three fragmentation functions

P+AU, y, = 3.0, \/syv = 200 GeV

0.03 0.000

0.0 prmm=m=m=mmmmmm e ]
e = —0.005 |
S 0.01 | ~~~~~~~~~
7o Y O —0.010 ¢
S 0.00 |
S
S > | e > _
" < 0.0 e < —0.015
-
> el Iy \+ —0.020 |
c | — 7T
- —0.03|
> |7 — o
£ voul n —0.025 |

e yp = 3.0 — 7 Tt v, =3.0
020 025 030 035 040 045 050 055 0.60 020 025 030 035 040 045 050 055 0.60
XF XF

kinematic region and required precision well fit the LHCspin potentialities
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PGT implementation into LHCb

Transverse polarization
MAGNET INFO FOR THE CELL ACCESS

e |nject polarized gas via ABS and unpolarized
gas via UGFS yoke

wwwww

FEED THROUGH SERVICES
"

FEED THROUGHS:

- ABSx1

- BRPx1

- Ugfsx1

- Motors x 2

- Thermal sensors x 1

et e bt b B
i '-!5‘-".‘*.!.‘!!1!'.1\.!;!!!-'1:*.'.».«- i Th
A ‘l!!\‘ﬂ!-.a“.!.l!!!'-‘x‘él!!!,i:ﬁ!!‘.!%ﬁ&!‘,_l,!!,-,\,-,!!. I

3
-

coils
.
B vorors.
MAGNET IN TWO SEPARATED COILS
ABS
] - CSHAPE YOKE OR WITH A SIDE
~ 7 REMOVABLE PLATE

e Compact dipole magnet — static transverse field

Surface contours: B
1.660342E+00

1.600000E+00

e Superconductive coils + iron yoke configuration fits the
space constraints

250~ 1.400000E+00

H— 1.200000E+00

e B =300 mT with polarity inversion, AB/B ~ 10 %, suitable
to avoid beam-induced depolarization [PoS (SPIN2018) ]

H— 1.000000E+00

H— 8.000000E-01

- . - — i — e __

—— 6.000000E-01

H— 4.000000E-01

i: 2.000000E-01
5.8286136-02 3 3

Possibility to switch to a solenoid and provide
longitudinal polarization



https://pos.sissa.it/346/098

Role of the storage cell coafing

Carbon thin films

sp3 sp2 ta"C

low SEY

Sp 3 Diamond-like

7/ /)

high SEY

Fig. 2. Ternary phase diagram of bonding in amorphous carbon-hydrogen alloys.

J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Beam chamber

Bunch spacing (e.qg. 25 ns) Timi

The material of the cell walls must have a low Secondary Electron Yield (e-cloud)

SMOG2 non coated cell
" aluminum_ CuBe (flexible)

| 28
e P \
- 5 o o
- N Pl WL
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SMOG2 amorphous Corbon coated cell




Coating issues

Amorphous carbon is a very effective coating for maintaining low SEY, as
demonstrated by SMOG2. However, what about atomic recombinatione

Eley-Rideal Mechanism
Eley-Rideal Mechanism Eley-Rideal Mechanism

poor'zed<>\ —’ ? ___’

o

=0.5P,

~ T v T e
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Coating issues

Amorphous carpbon is a very effective coating for maintaining low SEY, as
demonstrated by SMOG2. However, what about atomic recombinatione

Eley-Rideal Mechanism

P,=05P,

o

Eley-Rideal Mechanism Eley-Rideal Mechanism

poor'zed<>\ —’ ? —’ @

/ / / / unpolarized / / / /

INn previous experiments at HERA and COSY, Dryfilm (silicon) or Teflon (fluoride) coating,
combined with ice layers, kept the SEY low and prevented recombination

This is not possible at LHC: no fluoride, no silicon materials allowed
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Coating issues

Let’s tfry to change the paradigm and exploit the recombination effects.
This can happen if:

1) -

he recombina

2)

lon process is “fast enough’ fo recombine two polarized atoms

he recombina

lon into molecules Is very high
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Coating issues

Let’s fry o change the paradigm and exploit the recombination effects.
This can happen if:

1) the recombination process is “fast enough” to recombine two polarized atoms
2) the recombination info molecules is very high

A test was performed at FZ-Julich on a quartz storage cell coated at CERN with
amorphous carbon, just like the SMOG2 storage cell

Acknowledgement for the coating process: Yorick DELAUP, Bernard HENRIST, Pedro COSTA PINTO - CERN TE-VSC
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Role of the storage cell coafing

The amorphous Carbon coating (the one used for SMOG2) provides almost full recombination and keeps a reasonable polarization

§ § EE 0.7 Nuclear Instruments and Methods in Physics Research A 1068 (2024) 169707
o & &
g — = Contents lists available at ScienceDirect =
~ S S 0.6 ! =
S = = Nuclear Inst. and Methods in Physics Research, A i
=32 05 =
a7 journal homepage: www.elsevier.com/locate/nima —
QD v
S 0.4
@ ' Full Length Article )
Q. . k
SH Amorphous carbon-coated storage cell tests for the polarized gas target at S
LHCb
0.2 In iTI'OI O fomic Olarisa TiOn P — O QO T. El-KOI'dy a:b’CIEj’*, P. Costa Pi_ntO dl'/l‘zj, P.Di I_\Iezza e]E'}, R. _Engels a,b-:ljin, M. F_CI'I'O-LUZZi d(]z(,
: , P c ' N. Faatz*>fJ, K. Grigoryev"”, C. Kannis#”, S. Piitz >*©, H. Sharma <2, V. Verhoeven >"®
Recombination rate 95.8-100 % * Institut fiir Kernphysik, Forschungszentrum Jiilich, Wilhem-Johnen-Strae, Jiilich, 52428, NRW, Germany
0.1 b GSI, Helmholtzzentrum fiir Schwerionenforschung, Planckstrafe 1, Darmstadt, 64291, Hessen, Germany
€ FH Aachen - University of Applied Sciences, Bayernallee 11, Aachen, 52066, NRW, Germany
4 European Organization for Nuclear Research, CERN, Esplanade des Particules 1, Geneva, 1211, Genf, Switzerland
® Istituto Nazionale di Fisica Nucleare, Laboratori Nezionali di Frascati, Via Enrico Fermi 54, Frascati, 00044, Rome, Italy
0%0 01 02 03 04 05 06 oL Physikalisches Institut B, RWTH Aachen, Templergraben 55, Aachen, 52062, NRW, Germany
' ' ' ' ' ' ' £ Heinrich-Heine-Universitiit Diisseldorf, UniversitdtsstraRe 1, Diisseldorf, 40225, NRW, Germany
B/ T b Universitit zu Kéln, AlbertusMagnus-Platz, Koln, 50923, NRW, Germany

Proton vecftor polarization for different magnetic fields

We can develop a new storage cell using > ® high density target
polarized molecules e but an absolute polarimeter is needed
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Development of an absolute polarimeter o e
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To validate the theorefical predictions of the analyzing power at 7 TeV, in addifion to evaluatfing
detecftion efficiency and background, the absolute polarimeter must be installed in coincidence
with the standard Breif-Rabi Polarimeter along the beamline
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The backup: the jet targef Pro

-NO recombination
-high polarisation

Alternative solution with jet target also under evaluation: -very small systematics on the polarisation measurements

* lower density (~10'? atoms/cm?)

. LA Contra
* higher polarization (up to 90%) x40 less luminosity than the cell solution
* Jower systematics in P measurement (virtually close to 0) (tolerable for the standard channels, relevant for the rare
probes)




The plan is to develop the project in 2 phases:
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The plan is to develop the project in 2 phases:

Install the PGT in LHCb for the Rund and exploit
all the enormous potentialities due to the LHCb
(upgrade Il) spectrometer: c-, b-quark
reconstruction, rare probes, RTA, ...

Polarized farget
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The plan is to develop the project in 2 phases:

1

Develop a compact apparatus capable of:

- conducting R&D to have a “plug & play” PGT
for RunS

- perform physics measurements never
accessed before /

- perform measurements connectedtotHc i

- efc...

Install the PGT in LHCb for the Rund and exploit
all the enormous potentialities due to the LHCb
(upgrade Il) spectrometer: c-, b-quark
reconstruction, rare probes, RTA, ...

Polarized farget
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The LHC Interaction Regions
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The LHC
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V.Carassiti - Ferrara

MAGNET

1 meter

ABS DISSOCIATOR

ABS MAGNETS AND FREQUENCY
TRANSITIONS LINE

VACUUM CHAMBER

RECOIL DETECTOR

BRP



VACUUM CHAMBER 1

TO SILICON DETECTOR - D100 mm tube

CONICAL TRANSITION L200 mm
TO ABS — D35 mm tube

VACUUM CHAMBER D100 mm ; L6000 mm

TO VACUUM PUMP — D100 mm tube

&
-?., , TO VACUUM PUMP — D100 mm tube
TO BRP — D35 mm tube

TO SILICON DETECTOR - D100 mm tube
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Detector concept at the IR4

Apparatus:

- jet-target (but could be done also with storage cell)

- full (minimal) spectrometer: dipole magnet,
tracking stations, muon system

- simple PID detectors (Calo, RICH)?

Goals:
- proof of principle of the future (large-scale) experiment with LHCb.
- measurement of single-spin asymmetries in inclusive

hadron production in pH' and PbH'

Needed expertise (apart from pol. target):

- dipole magnet

- tracking detectors (Si strip, SciFi, drift chambers?)
- muon chambers (MWPC?)

- electronics

- DAQ

- slow control

- tracking/reconstruction algorithms

Dipole

magnet Muon
BRP chamber
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Even though the focus will be on polarimetry and beam interactions, we performed preliminary calculations to
determine If a simple detector could meet our needs

TO e TN
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Momentum resolution vs spectrometer length
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we can achieve aresolution ép/p < 1 % within
a few meters of lever arm (depending on
space constraints) for momenta up to a few
GeV and with N = 10 hit measurements

with ép/p ~ 1 % we have ém ~ 40 MeV,
excellent for any other measurement

It IS even possible to have a ToF PID
@3¢ level forz — K
p~ 1 GeV = 6;0(100) ps
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Cover page
LHCspin: a Polarized Gas Target for LHC

Contact author: Pasquale Di Nezza (Pasquale.DiNezza@Inf.infn.it)

Abstract

The goal of the LHCspin project is to develop innovative solutions for measuring the 3D
structure of nucleons in high-energy polarized fixed-target collisions, exploring new processes
and new probes in a unique, poorly explored kinematic regime at LHC beam energies. This
ambitious task is being based on the recent experience with the successful installation and ex-
ploitation of the SMOG2 unpolarized gas target in front of the LHCb spectrometer. SMOG2
provides an ideal benchmark for studying beam-target dynamics at the LHC and demonstrates
the feasibility of simultaneous operation with beam-beam collisions. With the installation of
the proposed polarized target system, LHCb will become the first experiment to simultaneously
collect data from unpolarized beam-beam collisions at /s=14 TeV and polarized and unpo-
larized beam-target collisions at /syn ~100 GeV. LHCspin has the potential to open new
frontiers in physics by exploiting the capabilities of the world’s most powerful collider and one
of the most advanced spectrometers.
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EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
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LHCb Upgrade 1I Scoping Document

LHCDb collaboration

Abstract

A second major upgrade of the LHCb detector is necessary to allow full exploitation
of the LHC for flavour physics. The new detector will be installed during long
shutdown 4 (LS4), and will operate at a maximum luminasity of 1.5 x 103 em~—2s~1.
By upgrading all subdetectors and adding new detection capability it will be possible
to accumulate a sample of 300fb~! of high energy pp collision data, giving unprece-
dented and unique discovery potential in heavy flavour physics and other areas. The
baseline LHCb Upgrade II detector has been presented in a Framework Technical
Design Report that was approved in 2022. Here, updates are presented alongside
scoping options with reduced detection capability and operational luminosity. The
costs and physics performance of each scenario are discussed, and an overview of
the project management plans is presented.

The polarized target is part of the LHCb
Scoping Document for the Upgrade |l

The project has been submitted to the ESPP

The iter with LHC/PBC has already started



Timetable

EAs an independent
. collaboration from

LHCDb
LHC Run4
data taking at
ne IR4 LHC Run5
data taking at LHCb
2025 2026 2029 2033 2035
NOW 5 i 5 5
LHC LS4
. LAC L33 . time for
time for installing the : installing the
.apparatus at the IR4: apparatus at
: ’ . LHCb
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Conclusions

The fixed targets at LHC are mnnovative and unique projects with remarkable potential for advancing physics
in largely unexplored kinematic domain

S M Oq 2 faced various technical challenges, but all 1ssues were solved through constructive
collaboration with LHC and LHCb experts

L C could be implemented within a realistic timeframe (during LHC LS3 for the LHC Run4,
starting data taking around 2030) and with a limited budget, paving the way for other new

spin |
frontiers of LHC
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