





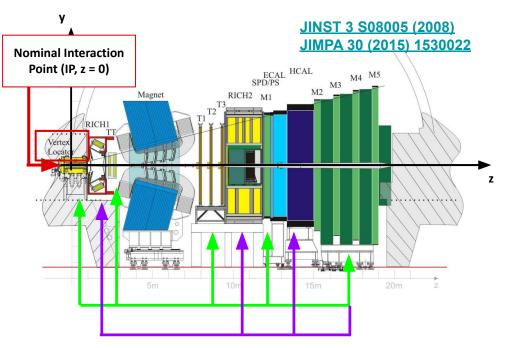




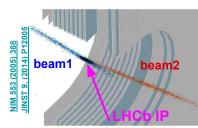


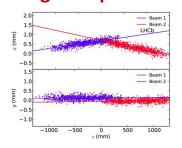



# The SMOG2 experience at LHC: technical challenges, implementation and lessons (I) learned


Saverio Mariani CERN

**Stony Brook University, 29/09/2025** 





#### The LHCb experiment in its fixed-target mode

• A **general-purpose** single-arm spectrometer ( $\eta \in [2, 5]$ ) with very precise tracking and vertexing, full PID, and **the only one at LHC equipped with a fixed-target facility** 



- A System for Measuring Overlap with Gas (SMOG) at LHCb from 2011, originally only to improve the collider-mode luminosity measurement
- Proton distribution in the beams imaged by reconstructing the beam-gas vertices (BGI), as well as the tiny quantity of debunched protons (ghosts) → leading lumi precision





Saverio Mariani



Nom

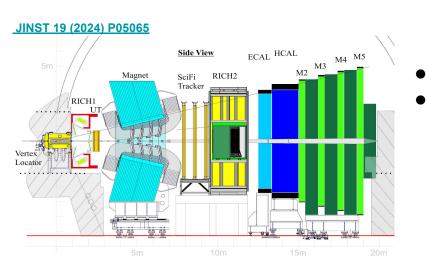
#### The LHCb experiment in its fixed-target mode

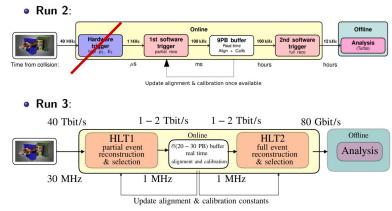
- A **general-purpose** single-arm spectrometer ( $\eta \in [2, 5]$ ) with very precise tracking and vertexing, full PID,
  - I will mostly cover today the aspects and lesson for SMOG(2) as a standalone physics experiment, but let me stress here how this has always been as well **a fundamental tool for LHCb collider mode**, enabling:
    - $\circ$  the beam-gas-imaging and ghost-charge measurements  $\rightarrow$  **1.12% lumi uncertainty**
    - studies on the beam quality (satellite charges, ion transmutation, vacuum quality...)
    - advanced (re)commissioning of the LHCb subdetectors, e.g. increasing their activity during the beam ramping-up phase
    - tests of the reconstruction/trigger algorithms in an orthogonal configuration wrt collider mode, with very precious debugging




All of this would be of critical importance for a FIX experiment at EIC



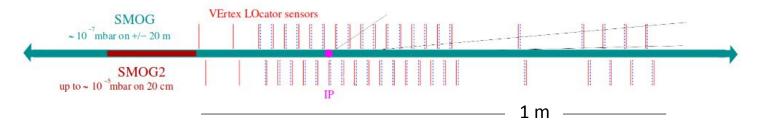


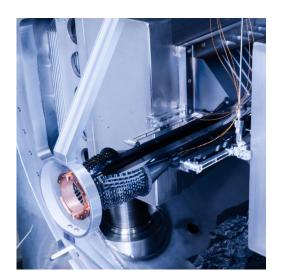


#### The LHCb Upgrade I detector

Comp Softw Big Sci 4, 7



Removed/replaced Kept from Run2



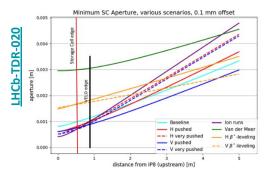




- Almost a new detector: increased granularity
- Hardware trigger removed. Fully software detector read-out, calibration, alignment and event reconstruction and selection in real-time
  - This means in particular trigger on physics reconstructed objects (tracks, vertices...)



#### The SMOG2 fixed-target upgrade






Phys. Rev. Accel. Beams 27 (2024) 111001

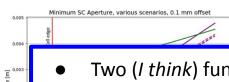
- SMOG: Gas was injected in the VELO vessel for a pressure  $\mathcal{O}(10^{-7} \text{ mbar})$ , and no dedicated precise gauges for the gas flow/pressure available
  - Overlap with the pp IP and luminosity measurement precision (6%) dominant on cross-section measurements
- SMOG2: confinement of the gas in a cell (1 cm diameter) made up of two movable halves (40 ± 10) cm upstream of the LHCb IP
  - In the LHC primary vacuum!
  - Up to x100 gas **pressure wrt SMOG for the same gas flow**
  - Cell detachment wrt IP enables simultaneous data-taking!
  - New Gas Feed System now equipped with precise gas flow measurement, enabling direct luminosity measurement



#### SMOG2 technical challenges - the cell



- Aperture: in its closed position, a worst-case scenario aperture during the Van Der Meer scans of 3 mm required → 5 mm choice
- **Flexibility**: the VELO has a minimum 3.5 mm (5 mm for the sensors) distance from the beam, which moves by  $\mathcal{O}(mm)$  fill by fill
  - The SMOG2 cell made of two movable halves to follow the VELO, one rigidly connected and the other one via a spring to ensure sealing and allowing closure on the fill-specific position



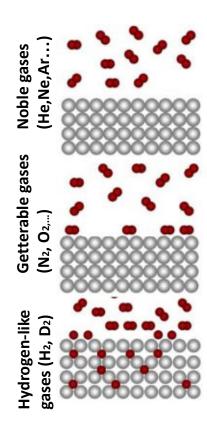

- All details of the (negligible) beam-gas collisions impact on the accelerator and on the detectors hardware required several and different studies
  - Beam lifetime reduction, impedance and electrical continuity, coating and secondary electron yield (see Pasquale's talk today and <a href="LHCb-TDR-020"><u>LHCb-TDR-020</u></a> + <a href="Phys. Rev. Accel. Beams 27">Phys. Rev. Accel. Beams 27</a> (2024) 111001)



**<10 wrt reality** 

#### SMOG2 technical challenges - the cell




- Two (I think) fundamental lessons here to keep in mind
  - What's the beam reproducibility, and how to ensure the cell closing is always centered wrt beam? A dedicated vertexing/beam monitoring detector is needed
  - The complexity of operating a gas storage cell in the LHC primary vacuum is such that all aspects must be under control of the project
    - Involvement of machine experts (vacuum, impedance, aperture...) is crucial



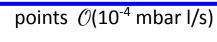
<u>LHCb-TDR-020</u> + Phys. Rev. Accel. Beams 27 (2024) 111001



#### **SMOG2** technical challenges - gas species



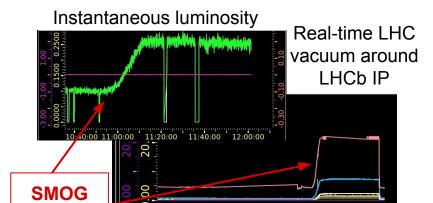
- SMOG physics goals (see next) requiring both heavy noble gases, maximising heavy-probes production cross-sections, and non-noble light ones
- Gas interaction with detector coating studied in details
  - <u>Light noble gases</u> are unlimited and safe, heavier ones (Kr, Xe) could accumulate to the cold-to-warm LHC magnet transitions and being investigated
  - Getterable non-hydrogen like gases (O<sub>2</sub>, N<sub>2</sub>) stick to the surface, and saturate its pumping capabilities  $\rightarrow \mathcal{O}(10 \text{ h})$  maximum injection time
  - Getterable hydrogen-like gases (H<sub>2</sub>, D<sub>2</sub>) partly stick to the surface, but also can penetrate it  $\rightarrow \mathcal{O}(100 \text{ h})$  maximum injection time
    - Coating peel-off or embrittlement (substrate cracking) can happen for larger fluxes than  $\mathcal{O}(40 \text{ mbar l/s})$ , negligible at the SMOG2 flux points  $\mathcal{O}(10^{-4} \text{ mbar l/s})$

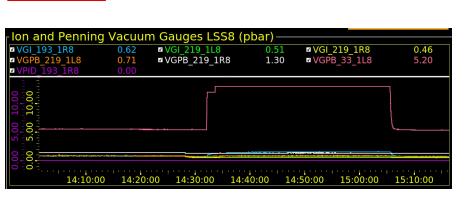



Noble gases

**Getterable gases** 

#### **SMOG2** technical challenges - gas species


- Despite we all like samples as uniform as possible, operations alternating periods with noble and non-noble injections are needed, in order to allow for coating relaxation
- Also, noble and getterable gases must not mix in the Gas Feed System, which has to be designed with redundancy and clear protections for the two gas types



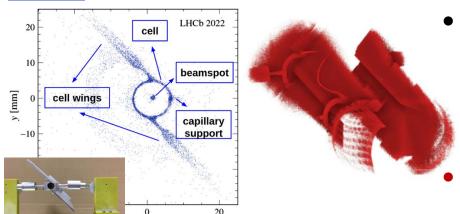



injection

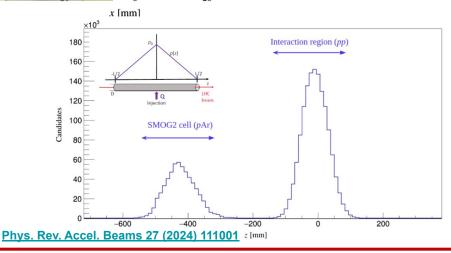
#### The SMOG2 commissioning






 In June 2022, with 450 GeV beams, first injections through the open SMOG2 cell, allowing CERN vacuum experts to set the injection procedure

- 01/11: First injection in the closed cell
- Very stable operations: with injected Ar with a pressure 6.5 times lower wrt Run 2, already achieved a x5.5 higher inst. luminosity!
- In 11/2022, injected He, Ne, Ar and, for the first time ever, H<sub>2</sub>

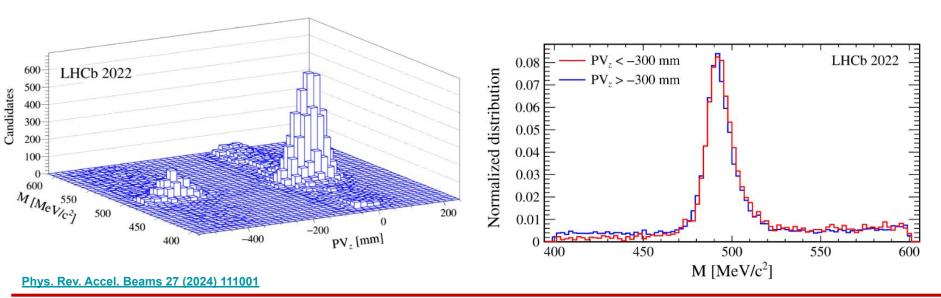

GFS fully and successfully commissioned



#### The SMOG2 commissioning (II)



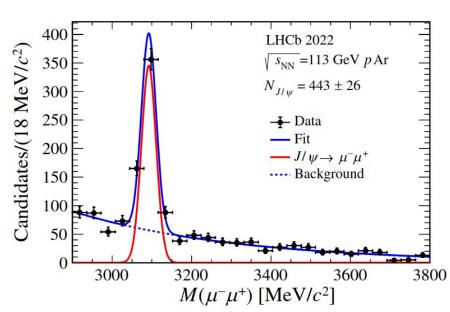
- Hardware and software commissioning
  - SMOG2 cell imaged by reconstructing material interaction vertices, to verify design positions and alignment
  - Verified beam-gas and beam-beam PV separation and particle distributions
  - LHCb can and is running since 2024 with two simultaneous IPs

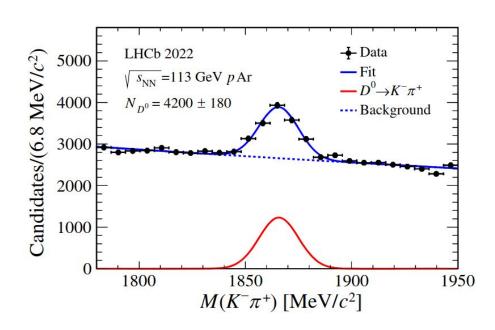







#### The SMOG2 commissioning (III)


- LHCb can and is running since 2024 with two simultaneous and independent IPs
  - First ingredient is **precision**: LHCb momentum resolution and to a good extent efficiency do not depend on the z

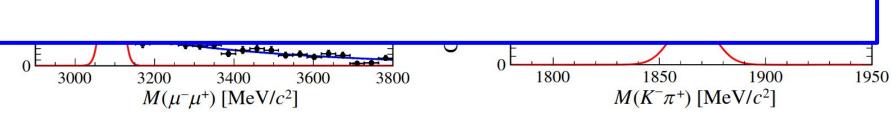





#### The SMOG2 commissioning (IV)

- LHCb can and is running since 2024 with two simultaneous and independent IPs
  - First ingredient is **precision**: LHCb momentum resolution and to a good extent efficiency do not depend on the z
  - Second ingredient is the **samples size**: with 18 minutes of *p*Ar, clear charm signals appearing!



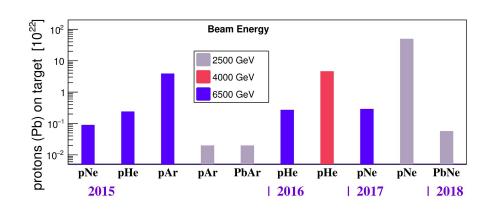


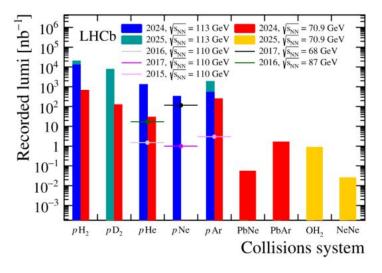

Phys. Rev. Accel. Beams 27 (2024) 111001



#### The SMOG2 commissioning (IV)

- LHCb can and is running since 2024 with two simultaneous and independent IPs
  - First ingredient is precision: LHCb momentum resolution and to a good extent efficiency do not
  - A dedicated trigger system selection is needed to decouple beam-gas and beam-beam collisions → need physics objects, e.g. tracks coming from or reconstructed vertices in the SMOG2 cell; level-0 thresholds would not be discriminative enough!

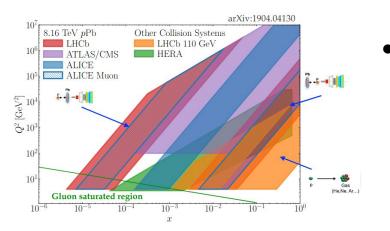




Phys. Rev. Accel. Beams 27 (2024) 111001

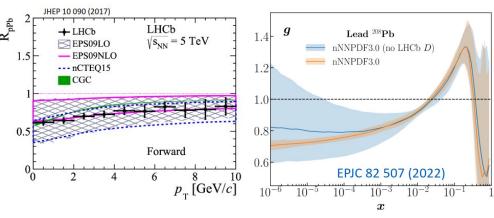
Candidates/(18 MeV/ $c^2$ 



#### ...and it's working so well!







- While the Run2 SMOG has pioneered fixed-target physics at LHC, with SMOG2 the only 2024 + 2025
  give up to x1000 statistics and an expansion of the available gas to inject
- Keep extending the programme, owing to new gases ( $H_2$  and  $D_2$ ) and new ion species  $\rightarrow$  system size scan!



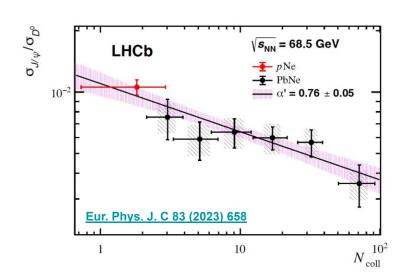
#### LHCb Bjorken-x coverage

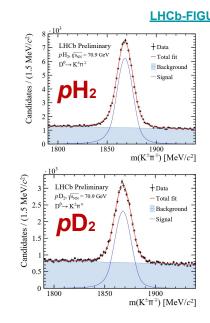


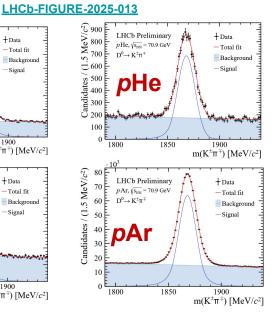
- By combining pPb, UPC PbPb and fixed-target data, LHCb is able to cover a **very wide region in Bjorken-x**:
  - With pPb/Pbp, reaching Bjorken-x  $\sim 10^{-6}$
  - With pA in SMOG, exploring the high-x at moderate  $Q^2$  region, mostly unexplored by previous experiments



 Dramatic impact of our measurements in constraining low-x nuclear PDFs, while high-x region still mostly unconstrained



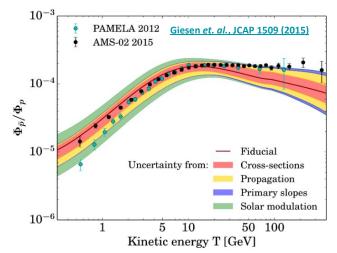


#### LHCb SMOG as a high-x nucleon imager

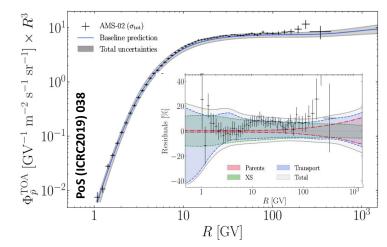

- Multiple open-charm and charmonium measurements available with SMOG data (pHe, pAr, pNe, PbNe)  $\rightarrow$  onset of nuclear effects and transition to QGP as a function of system size
  - No J/ψ anomalous observation seen in PbNe

Measurements suffering available statistics. With SMOG2, a high-precision study of the high-x

**nPDF** will be possible!





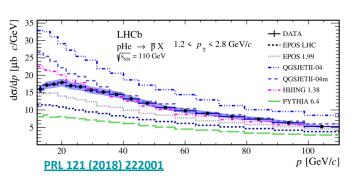



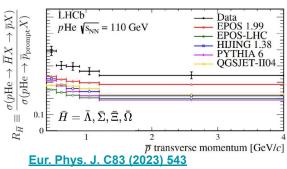


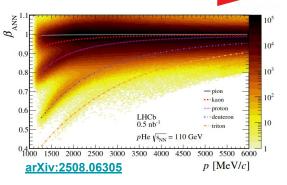

#### **Antimatter production in cosmic rays**

- Intensive programme ongoing since a few years to **constrain antimatter production** in beam-gas SMOG collisions, reproducing a Cosmic Ray impinging on the Interstellar Medium (ISM, 90% H<sub>2</sub> + 10% He)
- Crucial inputs for Dark Matter decays to particle-antiparticle final states by satellite experiments (AMS)





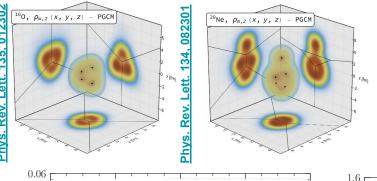


- For antiprotons, update of the theoretical models (also including LHCb results!, see next slide) makes antiproton fluxes measured by AMS consistent with CR-ISM hypothesis only (so, **no DM yet**).
- Cross-section uncertainties are still dominant, and more cross-section measurements for sqrt(sNN) € [10, 200] GeV are needed arXiv:2503.16173




#### LHCb SMOG on a space mission

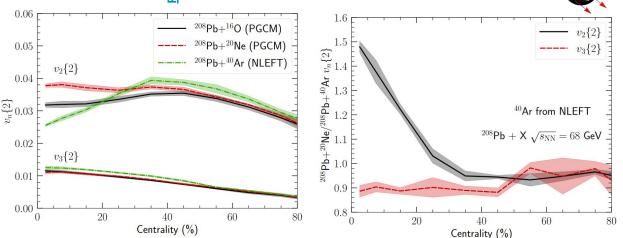
- LHC beam collisions on the SMOG gas reproducing a cosmic ray impinging on the Interstellar Medium  $(pHe, pH_2, pD_2)$  or on the atmosphere  $(OH_2)$
- Measured in particular prompt and from-strange-decays antiproton production in 2016 pHe collisions, constraining antimatter fluxes in cosmic rays, background to indirect Dark Matter searches (AMS)
  - For both prompt and secondary production, first measurements ever in that system!
  - Extension with pH2 and pD2 collisions in SMOG2 ongoing
- Recently, also developed a new time-of-flight-based technique for (anti)deuteron identification in
  SMOG → will test fragmentation vs nuclear coalescence
- All of this was absolutely not foreseen at LHCb











#### LHCb SMOG as a bowling alley (I)

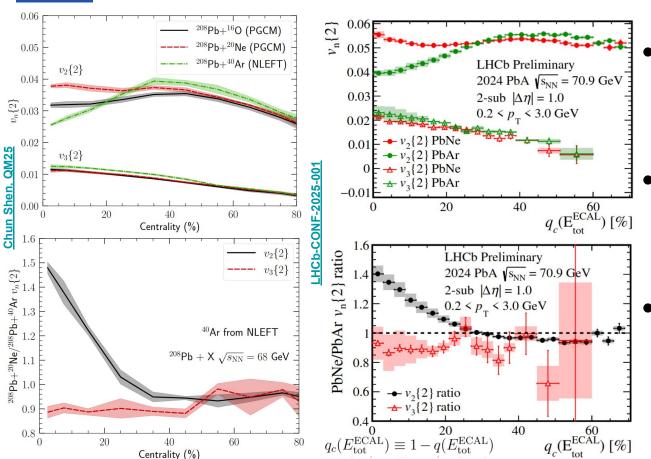
A central question in the field is what's the impact of the initial state geometry to the medium evolution ⇒ 2025 OO/NeNe runs (similar nuclear effects, but different geometry)



 Actually, SMOG2 already uniquely provides us a bowling alley, allowing comparison between neon and spherical nuclei like argon

• Can we provide **first experimental evidence** of the Ne shape?




- A significant connection
   between the initial-state
   geometry and the final-state
   flow observables expected
- In central collision, PbNe to PbAr ratio up to 1.5!

Chun Shen, QM25



### LHCb SMOG as a bowling alley (II)





- Results as a function of a proxy for the centrality (ECAL energy percentile) show an evident flatter  $v_2$ {2} values for PbNe than PbAr, and a similar  $v_3$ {2} This is **clearly consistent with the predicted Ne bowling-pin shape**, and confirms its **major**
- $p_{T}$ -differential results as a function of centrality will follow

effect on the collective

dynamics



#### **Conclusions**

- The SMOG(2) system at LHCb pioneered fixed-target physics at LHC, and is now a(n unexpected!)
  core part of its physics programme
  - Just a few examples today for high-x nPDF studies, probes for cosmic rays physics, flow... and
    so much more I was not able to cover!
- The SMOG2 implementation presented several challenges on the machine (aperture, impedance, coating...) and on the data acquisition (new trigger!) side
  - I am incredibly proud that we can now stand as an example of how to solve this, and, hopefully,
    see more fixed-target physics in the future!

## Thanks for your attention!

saverio.mariani@cern.ch