Fixed target experiments at the EIC:

A heavy ion perspective

Christine Nattrass (UTK)

Fixed target experiments at the EIC:

A heavy ion perspective

Christine Nattrass (UTK)

Attribution: Many ideas drawn from this workshop

Advancing Nuclear Physics: New Horizons with Fixed-Target Proton-Nucleus Experiments at Intermediate Energies

As well as conversations with: Niseem Magdy, Giorgio Torrieri But I take full blame for anything you don't like!

What would a fixed target program at the EIC have which is new?

- Polarized beams
- e^(†)+A^(†) and p^(†)+A^(†) measurements in same experiment
- Better insight! Better data management!

EIC pA √s_{NN}: 8.87-22.75 GeV

What would a fixed target program at the EIC have which is new?

- Polarized beams
- $e^{(\uparrow)} + A^{(\uparrow)}$ and $p^{(\uparrow)} + A^{(\uparrow)}$ measurements in same experiment
- Better insight! Better data management!

EIC pA √s_{NN}: 8.87-22.75 GeV

Some thoughts

- Fixed target→ higher luminosity, better for rare probes (could be an advantage)
- RHIC BES fixed target did not us p+A. Also might be nice to reproduce some p+A, A+A for consistency, systematic uncertainties
- Rare probes which we're better at measuring with current detectors: high p_T photons!
 Lambdas!
- RHIC's strength has always been its versatility. Would be really nice to have system scan, look for collective motion.

Some thoughts

- Fixed target→ higher luminosity, better for rare probes (could be an advantage)
- RHIC BES fixed target did not us p+A. Also might be nice to reproduce some p+A, A+A for consistency, systematic uncertainties
- Rare probes which we're better at measuring with current detectors: high p_T photons!
 Lambdas!
- RHIC's strength has always been its versatility. Would be really nice to have system scan, look for collective motion.

Origin of hydrodynamic response

Is this a liquid? https://scroll.in/article/857298/are-cats-liquid-

answering-this-question-won-me-an-ig-nobel

Heikki Mäntysaari, Björn Schenke, Chun Shen, Wenbin Zhao

arXiv:2509.00511

Heikki Mäntysaari, **Quark Matter 2025**

"Hydrodynamic response to initial-state geometry predicts a distinct sign of v2 correlated with the deuteron's polarization states, providing a clean test case for elucidating the collective origin in small collision systems." PYTHIA predicts opposite signs

Christine Nattrass (UTK), Exploring a fixed target program at the EIC, 9/30/25

Vortex Rings

- Measure with Λ
- Work did not include polarized beam

f = 0: bjorken flow f = 1: 'matter overlap'

(macroscopic) Vortex rings: what they are and where to find them

Vortex Rings

- Measure with Λ
- Work did not include polarized beam

f = 0: bjorken flow f = 1: 'matter overlap'

(macroscopic) Vortex rings: what they are and where to find them

Thermal Radiation Performance Studies

Pb-Pb at for 2, 1, 1 month data taking

DiCE/NA60+ & CBM
Precision
characterization
system temperatures
in phase transition
region!

Axel Drees

Thermal Radiation Performance Studies

Pb-Pb at for 2, 1, 1 month data taking

DiCE/NA60+ & CBM
Precision
characterization
system temperatures
in phase transition
region!

Heavy Ion Physics in this region

- Initial system near
 - Initial partonic state
 - Immediate hadronization
- Ideally suited to study hadronization?

- Competitive environment with state-of-the-art experimen
 - @FAIR CBM multipurpose and dilepton detector
 - @SPS DiCE dimuon & charm & some hadronic obs

Absence of photon measurements!

Possible opportunity:
low p_T direct photons
from hadronization

Axel Drees

Heavy Ion Physics in this region

- Initial system near
 - Initial partonic state
 - Immediate hadronization
- Ideally suited to study hadronization?

- Competitive environment with state-of-the-art experimen
 - @FAIR CBM multipurpose and dilepton detector
 - @SPS DiCE dimuon & charm & some hadronic obs

Absence of photon measurements!

Possible opportunity:
low p_T direct photons
from hadronization

Axel Drees

Search for baryon junctions

In nuclei, 99% of the matter mass is generated by the strong interaction What is the dominant feature in all these snapshots? Zhangbu Xu LOW X HIGH X

Search for baryon junctions

In nuclei, 99% of the matter mass is generated by the strong interaction

What is the dominant feature in all these snapshots?

Zhangbu Xu

Measurements of quark baryon number?

- Textbook picture of a proton
 - Lightest baryon with strictly conserved baryon number
 - Each valence quark carries 1/3 of baryon number
 - Proton lifetime >10³⁴ years
 - · Quarks are connected by gluons
- Alternative picture of a proton
 - Proposed at the Dawn of QCD in 1970s
 - A Y-shaped gluon junction topology carries baryon number (B=1)
 - The topology number is the strictly conserved number
 - Quarks do not carry baryon number
 - Valence quarks are connected to the end of the junction always
- Neither of these postulations has been verified experimentally

[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442-460 (1975).

[2]: Rossi, G. C. & Veneziano, G. A; Possible Description of Baryon Dynamics in Dual and Gauge Theories. Nucl. Phys. B 123, 507-545 (1977)

Zhangbu Xu

Measurements of quark baryon number?

- Textbook picture of a proton
 - Lightest baryon with strictly conserved baryon number
 - Each valence quark carries 1/3 of baryon number
 - Proton lifetime >10³⁴ years
 - · Quarks are connected by gluons
- Alternative picture of a proton
 - Proposed at the Dawn of QCD in 1970s
 - A Y-shaped gluon junction topology carries baryon number (B=1)
 - The topology number is the strictly conserved number
 - Quarks do not carry baryon number
 - Valence quarks are connected to the end of the junction always
- · Neither of these postulations has been verified experimentally

[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442-460 (1975).

[2]: Rossi, G. C. & Veneziano, G. A; Possible Description of Baryon Dynamics in Dual and Gauge Theories. Nucl. Phys. B 123, 507-545 (1977)

Zhangbu Xu

https://www.reddit.com/r/cat/comments/nsdtma/ how my brothers three cats were found asleen this

System scan at low energy?

Perturb the initial condition and observe the final-state responses, potentially with a large lever arm to probe the dynamics at similar volume. AGS is a unique facility for this

Stopping and expansion dynamics depend on orientation

A	isobars	A	isobars	A	isobars	A	isobars	A	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, H
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm, Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm, Gd	184	W, Os
50	Ti, V, Cr	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb. Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

Isobar collisions, either switch beam or the target

$$R_{\mathcal{O}} \equiv rac{\mathcal{O}_{ ext{X}+ ext{X}}}{\mathcal{O}_{ ext{Y}+ ext{Y}}} pprox 1 + c_1 \Delta eta_2^2 + c_2 \Delta eta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Dynamics is a strong function of \sqrt{s} , need collisions of the same isobar pairs at a few \sqrt{s}

AGS covers the range where the dynamics change the most

Jiangyong Jia

System scan at low energy?

Perturb the initial condition and observe the final-state responses, potentially with a large lever arm to probe the dynamics at similar volume. AGS is a unique facility for this

Stopping and expansion dynamics depend on orientation

Isobar collisions, either switch beam or the target

$$R_{\mathcal{O}} \equiv rac{\mathcal{O}_{ ext{X}+ ext{X}}}{\mathcal{O}_{ ext{Y}+ ext{Y}}} pprox 1 + c_1 \Delta eta_2^2 + c_2 \Delta eta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Dynamics is a strong function of \sqrt{s} , need collisions of the same isobar pairs at a few \sqrt{s}

AGS covers the range where the dynamics change the most

Jiangyong Jia

Summary of Ideas

- (Polarization-dependent) hydrodynamics (p+A)
- Vortex rings (p+A)
- Thermal radiation (p+A, A+A)
- Baryon junctions (p+A, A+A)
- System scan (p+A, A+A)

Backup

e-beam energy (GeV)	p-beam energy (GeV)
18	275
10	275
10	100
5	100
5	41

- EIC fixed target energies per nucleon pair: 8.87, 13.77, 22.75 GeV
- AGS: 2.72-6.67 GeV AGS pA √s_{NN}: 2.72-6.67 GeV