From Ultra-Peripheral to Fixed Target: Low energy photonuclear physics at the EIC

Daniel Brandenburg

Fixed-target eXperiment at EIC (FIXE) initiative September 29, 2025

Outline

- Physics motivation
 - Hadron Mass generation & QCD Trace Anomaly
- Near-threshold photonuclear production
- EIC collider mode
- Fixed Target mode
 - Photon source and approximate rates
 - Sub-threshold production
 - Lighter VM production
- Utilization of the ePIC instrumentation
- Summary & Conclusions

Trace Anomaly and the Origin of mass

>99% of all visible mass in the Universe is built from nucleons Higgs mass accounts for a small portion, with majority resulting from the strong force self-interactions

$$T^{\mu}_{\mu} = \frac{\beta(g)}{2g}G^2 + (1 + \gamma_m)\overline{\psi}m\psi,$$

Gluons
$$(T_g^{\mu\nu})$$
 Quarks $(T_q^{\mu\nu})$

$$\langle P|T^{\mu\nu}_{q,G}(0)|P\rangle = 2P^{\mu}P^{\nu}A_{q,G}(0) + 2M^2g^{\mu\nu}\bar{C}_{q,G}(0),$$

Threshold Vector Meson Production

- Probe gluonic structure of the nucleon near confinement scale (especially for heavier VMs like J/psi and Upsilon)
- Access gluonic gravitational form factors (GFFs)
- Connect to the proton mass decomposition and QCD trace anomaly
- Unique sensitivity in Upsilon, J/ψ, φ, and ρ near threshold, each in contribute different constraints

```
Wang et al. (2023) — arXiv:2308.04644, 2304.07964
Hatta et al. (2025) — arXiv:2501.12343
Du, Xie et al. (2020) — arXiv:2009.08345
Winney (2023) — arXiv:2305.01449
Kim et al. (2024) — arXiv:2411.12187
```

Why Threshold Production?

- Valence (large-x) gluons & transition from non-perturbative to perturbative QCD
- Near threshold, the produced VM is slow in the target rest frame
- Amplitude is dominated by multigluon exchange with x ≥ 0.1, where constraints are poor.
- mapping energy and tdependence here tests models (Regge/Pomeron, GPDs, VMD/dispersion, NRQCD).

Nucl. Phys. A 1026 (2022) 122447

Threshold Vector Meson Production

• In $\gamma p \rightarrow VM p$:

$$W_{thr} = m_p + m_{VM}$$

Vector Meson	Invariant Mass [GeV]	Threshold [GeV]
ρ	0.775	1.713
ϕ	1.019	1.957
J/ψ	3.097	4.035
Υ	9.46	10.398

Wang et al. (2023) — arXiv:2308.04644, 2304.07964

Hatta et al. (2025) — arXiv:2501.12343

Du, Xie et al. (2020) — arXiv:2009.08345

Winney (2023) — arXiv:2305.01449

Kim et al. (2024) — arXiv:2411.12187

First Measurement of Near-Threshold J/ψ Exclusive Photoproduction off the Proton

A. Ali¹⁰, M. Amaryan²², E. G. Anassontzis², A. Austregesilo³, M. Baalouch²², F. Barbosa¹⁴, J. Barlow⁷, A. Barnes³, E. Barriga⁷ et al. (GlueX Collaboration)

Phys. Rev. Lett. **123**, 072001 – **(2019)**

Phys. Rev. C **108**, 025201 – (**2023**)

Phys. Rev. Lett. **134**, 201903 – **(2025)**

- First measurements at Jlab in the last few years
- Similar trend but tension with some lattice calculations and models

First Measurement of Near-Threshold J/ψ Exclusive Photoproduction off the Proton

A. Ali¹⁰, M. Amaryan²², E. G. Anassontzis², A. Austregesilo³, M. Baalouch²², F. Barbosa¹⁴, J. Barlow⁷, A. Barnes³, E. Barriga⁷ et al. (GlueX Collaboration)

Phys. Rev. Lett. **123**, 072001 – **(2019)**

Phys. Rev. C **108**, 025201 – (**2023**)

Phys. Rev. Lett. **134**, 201903 – **(2025)**

- First measurements at Jlab in the last few years
- Similar trend but tension with some lattice calculations and models

Hadron Mass: Priority for the EIC

Discussed extensively in Yellow Report, White papers, etc.

- Exclusive processes: DVCS & vector mesons (YR, Vol II)
- Heavy quarkonia: sensitivity to gluon GPDs & GFFs
- Influence forward detector concepts: Roman pots, recoil tagging (YR, Vol III)

$$W^{2} \approx y \, s_{ep} + m_{p}^{2} - Q^{2}$$
$$y = \frac{E_{\gamma}}{E_{e}}$$

With EIC beam configurations (5,10,18)x(41, 100, 275) and $y_{min} \approx 0.01$, EIC collider mode can reach $W_{min} \approx 3$ -5 GeV

Experimental Access

- Total cross section slope \rightarrow gluon pressure & shear (GFF $C_g(t)$)
- Threshold normalization \rightarrow gluon energy-momentum fraction (GFF $A_g(0)$)
- |t|-dependence of differential cross section → transverse distributions and subnucleonic dynamics

Proton (gluon) Radius

Chin.Phys.C 48 (2024) 5, 054102

Recent data is narrowing in, but still lacks precision

EIC Collider mode (ep + eA)

$$W^{2} \approx y \, s_{ep} + m_{p}^{2} - Q^{2}$$
$$y = \frac{E_{\gamma}}{E_{e}}$$

J/psi may be challenging in collider mode and will likely require Q^2 >> 0, will also depend on energy resolution for y measurements

EIC collider mode will be most ideal for threshold Upsilon photoproduction (Q^2~0)

9/29/25

EIC Yellow Report https://arxiv.org/pdf/2103.05419₁₂

Low-Energy Photonuclear w/Fixed Target

- 275 GeV proton beam
- EPA photon $k \le \frac{\gamma \hbar c}{R}$
- $W_{max} \approx \sqrt{m_p^2 + 2m_p k_{max}} \approx 12.5$ GeV

Able to access threshold J/psi (4.04 GeV) and Upsilon (10.4 GeV)

Low-Energy Photonuclear w/Fixed Target

Able to access threshold J/psi (4.04 GeV) and Upsilon (10.4 GeV)

Production Rate:

$$L_{\gamma p} = I_p \, n_t \, N_{\gamma}$$

$$R \approx L_{\gamma p} \times \sigma_{\gamma p \to J/\psi p}$$

$$n_t \approx 10^{13} \text{cm-2}, \sigma_{\gamma p \to J/\psi p} \approx 1\text{-3 nb}$$
 $\mathcal{O}(100-1000) J/\psi$ per day

Complement EIC Collider measurements (electroproduction $Q^2 > 0$) and Jlab experiments

Sub-Threshold production and A-scan

$$k_{\mathrm{t}h} = \frac{(M_A + M_V)^2 - M_A^2}{2M_A} = M_V + \frac{M_V^2}{2M_A}$$

 ≈ 8.21 GeV on a proton to ≈ 3.35 GeV on 20 Ne

Production threshold decreases for heavier targets. Access production below the free proton threshold

Nucleus	Plane-wave	Measured	Statistical	Systematic
	cross section	cross section	uncertainty	uncertainty
² H	0.24 nb	0.23 nb	$0.07~\mathrm{nb}$	0.04 nb
$^4{ m He}$	0.22 nb	0.33 nb	0.06 nb	$0.05~\mathrm{nb}$
$^{12}\mathrm{C}$	0.24 nb	0.25 nb	$0.05~\mathrm{nb}$	$0.05~\mathrm{nb}$

EIC fixed target would allow scan of heavier A And first measurements of sub-threshold Upsilon

Phys. Rev. Lett. 134, 201903 (2025)

Phys. Rev. D 108, 054018 (2023)

\mathbb{Z}^2 Enhancement from Nuclear EM Fields

- Nuclear beams benefit from the \mathbb{Z}^2 enhancement of the WW photon flux
- However, in fixed target mode, 100 GeV beam gives $W_{max} < 3$ GeV \rightarrow insufficient for J/psi threshold production (even on heavy nuclear targets)
- Lighter mesons can be probed ($W_{th} \approx 2$ GeV) for ρ , ϕ
- J/psi (and Upsilon) received most attention because heavy VM are more directly related to the trace anomaly than light
- Other interesting physics in lighter mesons $(
 ho,\phi)$

Why study ρ , ϕ ?

- Relation to trace anomaly is less direct, but benefit from much higher rate (than J/psi) and Z^2 photon flux enhancement
- Vector mesons (ρ, φ) probing Reggeon vs Pomeron
 - Extraction of SDME to explore nonnatural contributions + look for SCHC violations
 - Strong handle on the nonperturbative end of the spectrum; tests of VMD and dispersion relations close to threshold
- Test models of nuclear shadowing at intermediate x

Revisiting the deuteron mass radius

arXiv:2504.10023 [hep-ph]

Why study ρ , ϕ ?

- ϕ probes the strangeness content and is largely unconstrained at large-x
- OZI → enhanced sensitivity to gluonic mechanisms and to strangeness content of the nucleon (possible s \(\bar{s}\) admixtures)
- Coherent φ on light nuclei → Adependence and small-|t|
 slopes for gluon distributions at
 large x.

E_{γ}	$ t-t_0 $	$a \tau$	stat.	
(GeV)	(GeV^2)	$(\mu {\rm b}/{\rm GeV}^2)$	uncer.	uncer.
1.65-1.75	0.509	0.31	0.084	0.094
1.65-1.75	0.887	0.20	0.049	0.037
1.65-1.75	0.924	0.13	0.066	0.041

Use of the ePIC Detector

The ePIC detector will have extremely advanced array of far-forward/backward capabilities

Use of the ePIC Detector

- Zero-Degree Calorimeters (both beams): neutron/photon detection; define Coulomb-excitation tags and impact-parameter classes for ion beams.
- Far-forward hadron system / Roman Pots: detect intact p and diffracted nucleons; measure t with good resolution.
- Off-momentum electron taggers / low-Q² taggers: select quasi-real photons from the electron beam; define clean γ-induced samples.
- Forward tracking + calorimetry: reconstruct low-p_T vector mesons, provide exclusivity vetoes, and measure SDMEs.
- Global vetoes & TOF: suppress peripheral hadronic backgrounds; enforce exclusivity.

Thoughts on using the electron beam

- Fine photon energy control is needed for certain aspects of the nearthreshold physics, i.e. structures in cross section
- Premiere experiments use thin radiators or inverse Compton scattering -> fine control on quasi mono-energetic photon beams

At the EIC:

- Tagged electron -> access virtual photons to lower Q^2 and higher E_{γ} (for displaced target with ePIC acceptance)
- Thin radiator + photon tagger -> create a next generation version of current Jlab experiments
- Inverse Compton Scattering -> utilize expertise and R&D for the polarimeters
- Larger initial investment, but more topics accessible with fine photon energy control + higher rate

Summary & Conclusions

Rich physics from vector Meson production near threshold

Access to QCD trace anomaly and the gluonic gravitational Form

Factors

$$T^{\mu}_{\mu} = \frac{\beta(g)}{2g}G^2 + (1+\gamma_m)\overline{\psi}m\psi,$$

- SMOG-like fixed target at EIC would allow complementary nearthreshold measurements of $\rho, \phi, J/\psi$
- Extend EIC collider kinematic reach to highest x values
- Equivalent Photons from proton beam allow threshold J/ψ , while lighter mesons benefit from Z^2 enhancement