
METHODOLOGY
1. Generate a set of networks with randomized weights and 

different combinations of the following variables:
A. Exchange/Correlation
B. Level of Theory: GGA/Meta-GGA/Non-Local 
C. Constrained/Unconstrained
D. Target Functional: PBE/PBE0/SCAN/(none)

2. Pretrain networks on XC energy density data generated 
by target functionals for a small subset of molecules.

3. Combine pairs of exchange and correlation functionals into 
new XC functionals.

4. Perform full training on the XC functionals using 
atomization energy values for ~150 molecules.
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DENSITY FUNCTIONAL THEORY
• Density functional theory (DFT) is a popular 

computational method based on quantum mechanics that 
is useful for understanding electronic structure. 

• It is widely used in condensed matter physics, 
chemistry, and materials science.

• The highly correlated interactions in many-electron 
systems make exact calculations impossible.

• DFT reduces computational complexity by allowing us to 
calculate the properties of a system of n electrons by using 
only the electron density (a function of only 3 spatial 
coordinates) rather than the electronic wave function 
(which would involve 3n coordinates).

• The most important parameter is the choice of exchange 
and correlation functionals (“XC functionals”).

• Thousands of XC functionals have been proposed based 
on both theoretical and empirical considerations.

• XC functionals belong to different levels of theory. 
Greater accuracy entails greater computational cost.

RESULTS
These graphs show preliminary results for various 
networks pretrained to approximate PBE, a popular 
GGA functional. The constrained GGA networks 
(GGA/C0 and GGA/C1) reproduce the exchange 
portion of PBE (FX) almost perfectly, whereas the 
unconstrained GGA networks do best on the 
correlation portion (FC). 

FUTURE WORK
• Train a network to reproduce the PBE functional based 

on a mesh of ρ and ∇ρ values. 
• Investigate the performance of networks composed of 

constrained X and unconstrained C functionals.
• Hyperparameter Optimization. Determine the optimal…
o Number of Hidden Layers/Nodes 
o Optimization Function
o Activation Function
o Learning Rate
o Batch Size
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NEURAL NETWORKS
• Machine learning (ML) is an approach to AI in which a 

computer system “learns” from input data through statistical 
pattern recognition, developing the ability to make accurate 
predictions about new data, rather than being explicitly 
programmed with specific rules by a human programmer.

• Neural networks are a specific type of ML model, inspired 
by the structure of biological neural networks in the brain.

• They consist of multiple layers of interconnected nodes (or 
“neurons”) organized into an input layer, one or more 
hidden layers, and an output layer.

• In the architecture we use (the multilayer perceptron), 
each node in a layer is connected to every node in the 
subsequent layer. Each connection has an associated 
weight that modulates the influence of the previous node on 
the subsequent node. 

• In addition, each node applies an activation function to its 
input to introduce non-linearity into the network, enabling it 
to learn complex patterns.

• During training, the network iteratively processes training 
data, calculates the error between its output and the 
expected output, calculates the gradients of the loss 
function with respect to the weights, and then updates the 
weights to minimize the loss function based on some 
optimization algorithm.

• After training, the network is tested on a test set of data.

ABSTRACT
Density functional theory (DFT) is the most widely used 
quantum mechanical computational method for calculating 
the properties of many-electron systems. Due to the 
extremely complex interactions between electrons, it is 
impossible to calculate these properties exactly. With DFT, 
however, we can obtain good approximations with relatively 
low computational expense. The key parameter one must 
choose when doing a DFT calculation is the exchange-
correlation (“XC”) functional, which serves as the 
mathematical engine for approximating electrons’ complex 
behavior. In this study, we use machine learning to develop 
accurate XC functionals. In particular, we explore how 
imposing exact constraints based on known physical laws 
can improve results, an approach known as physics-informed 
machine learning. Ultimately, we hope to discover the optimal 
procedure for training new XC functionals. 

EXAMPLE: LEARNING THE SINC 
FUNCTION WITH CONSTRAINTS

To illustrate the principles behind our research, we can 
consider a simple example in which we train a neural 
network to learn the sinc function. Sinc is defined as 

Based on our knowledge of this function’s behavior, we can 
impose constraints to limit the hypothesis space explored by 
the network during training. For instance, we know that

With these constraints, the constrained networks exhibit 
significantly lower errors in the regions immediately outside 
the training region bounded in red, indicating superior 
generalization.


