

ω/π^0 Ratio in the High-p_T Limit in Heavy-Ion Collisions

Konstantin Bauer, Axel Drees, and Roli Esha Department of Physics and Astronomy, Stony Brook University

Introduction

Quark-gluon plasma (QGP) is a state of matter in which quarks and gluons are not bound together in baryons.

- Relativistic heavy-ion collisions are employed to recreate QGP in a laboratory setting. Photons are a unique probe to study properties of QGP as they do not interact with the medium strongly.
- All the photons produced during the evolution of heavy-ion collision can be classified into decay photons and direct photons.
- It is desired to study the direct photons must isolate the decay photons and subtract them.
- Decay photons constitute about 80-90% of all photons hadrons that contribute the most are the π^0 , η , and ω mesons.
- π^0 spectrum is well-constrained experimentally; for η meson, a universality in η/π^0 ratio has been empirically observed, independent of collision system and energy [1]. This ratio is constant in the high- p_T limit.
- We examine the ω/π^0 ratio to see if a similar universal trend occurs.

Data sets

- In order to constrain the high p_{T} limit, data sets, sorted by their decay channels, are fitted with a constant above 5 GeV/c
- Machine learning-based regression tool, Multi-Layer Perceptron (MLP), is used to obtain the universal ω/π^0 fit

Results

 $\pi^{0} \gamma$ fit: 0.797 ± 0.0535 $\pi^{0} \pi^{+} \pi^{-}$ fit: 0.745 ± 0.0592 MLP fit: 0.852 ± 0.00179

Combined fit: 0.781 ± 0.0394

Discussion

Comparison of all data for p_T above 5 GeV/c

- Individual data sets show no p_T dependence
- No evidence for multiplicity dependence

Comparison of all ω data

- Drop at low p_T roughly consistent with m_T scaling
- Full evaluation of systematic uncertainties needed
- High p_T dependence possibly due to systematic difference between PHENIX/ALICE
- Effect of radial flow needs to be investigated

References

- [1] Y. Ren and A. Drees. "Examination of the universal behavior of the η -to- π 0 ratio in heavy-ion collisions", Physical Review C 104.054902 (2021).
- [2] A. Adare et al. "Production of ω mesons in p+p, d+Au, Cu+Cu, Au+Au collisions at \sqrt{sN} N = 200 GeV", Physical Review C 84.044902 (2011). [3] S. Adler et al. "Production of ω mesons in p+p and d+Au collisions at \sqrt{sN} N = 200 GeV", Physical Review C
- 75.051902 (2007).
 [4] M. Diakonou et al. "Inclusive high-pT ω 0 and η' production at the ISR", Physical Letters B 89 (1980).
- [5] S. Acharya et al. "Production of ω mesons in pp collisions at $\sqrt{s} = 7$ TeV", European Physics Journal C 80.1130 (2020). [6] G. J. Donaldson et al. "Observation of inclusive ω production at large transverse momentum", Physical Review
- D 21.3 (1980). [7] J. Polvis et al. "Nuclear Enhancement of $\pi 0$ and η Mesons Produced at Large Transverse Momentum", Physical Review Letters 51.11 (1983).
- [8] L.Apanasevich et al. "Inclusive production of ω mesons at large transverse momenta in π Be interactions at 515 GeV/c", arXiv: hep-ex/0004012 (2018).

Acknowledgments

I would like to sincerely thank Prof. Axel Drees and Dr. Roli Esha for their guidance and mentorship in this project. Further thanks to Prof. Navid Vafaei-Najafabadi for his organization of the 2023 REU.

This material is based on work supported by the National Science Foundation under Grant No. PHY-2243856.