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The MUon Scattering Experiment (MUSE)

2010: CREMA extract rp through muonic hydrogen spectroscopy
∼ 7.9σ from average ep scattering value at time

Birth of Proton Radius Puzzle
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MUSE

The MUon Scattering Experiment (MUSE) was directly inspired by the proton radius
puzzle
Goals:

Precision measurement of rp via ep and µp scattering
Precision study of TPE in ep and µp scattering
Direct test of lepton universality

Housed at the πM1 beamline at the Paul Scherrer Institute
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Experimental Setup

θ acceptance: 20− 100◦

πM1 Beam Line:

p∈ 115, 160, 210 MeV/c
Mixed beam of e, µ, π
Both polarities of particles!
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The Straw Tube Trackers (STT)

Primary scattered particle tracking
detector in MUSE

Mirrored setup:
20 planes of straws (10 horizontal, 10
vertical)

Vertical planes: θ
Horizontal planes: ϕ

Smaller front chamber, larger rear
chamber
5.1mm straw radius, 60 and 90 cm long
∼ 3000 straws total
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STT Tracking

Process:
Filter out noise hits/group tracks together
Parametrize track using spherical coordinates → 4 free parameters
Minimize χ2 of track to hits (represented by cylinders)
Difficulty: “Left-Right Ambiguity”

Left Tracks
Right Tracks
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STT Tracking: Sample Event
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STT Tracking: Sample Failure Event
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Ideas

As discussed last time: ML possibly can
be used to assist

Idea of NN:

Work in local frame of straw (top down
view)
Find which “side” simulated track passes
on
Output: binary left/right (y ≈ 0 more
often than not)
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NN Structure

Shallow network, bias=False because of
batch norms

Input: (BATCH, 2, 10, 89) (binary 0/1 hit
per straw, then the fired radii)

Output: logit (strength of prediction and
side) for each straw

Loss function: BCEWithLogitsLoss
(masked to only fired straws)
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Results: Correlation and Logits
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Hit Radii vs Correctness
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Model Behavior

Measure of performance: Receiver
Operating Characteristic (ROC) Curve

Used primarily in medical diagnostics
Graphical way to gauge binary classifier
performance
Higher area under curve (AUC) is better

AUC of 0.985 - incredibly strong model at
predicting left/right

Cut on: |logit| ≥ 2.5 and rdrift ≥ 1mm
radii: 99.4% LR correct on validation set!
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Implementation in Trackers

Trained in Python/PyTorch: need to translate to C++

Package of choice: ONNXRunTime

Highly optimized package to read ONNX files in C++

Inference in C++ on CPU isn’t the fastest: quantization/fusing layers!

Able to get inference speed on data to 0.10± 0.01 ms/prediction

Implementation:

If we have enough hits to infer: use ML predictions to fit (in local straw frame) to left/right
of each hit (based on ML predictions)
Feed output of this to standard tracking pipeline
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Performance on Simulation

Wanted some comparisons of
with and without ML

Ran small simulation, ran
tracking with and without ML
interface

Checked how often tracker got
LR correct

LR% Correct/Model Without ML With ML

Total 90.1% 92.6%

< 1mm 81.4% 82.2%

≥ 1mm 92.2% 95.0%

< 2.5mm 85.6% 87.7%

≥ 2.5mm 95.0% 97.6%

Vertical Straws 89.6% 93.3%

Horizontal Straws 90.9% 91.8%

LH Straws 91.5% 93.4%

LV Straws 88.1% 91.5%

RH Straws 90.1% 90.0%

RV Straws 91.0% 94.9%
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STT Tracking: Back to the Failure
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Noise Filtering

Have an algorithm to group hits together -
capable of some noise filtering and multi
tracking

Noise is too close to good hits - current
algorithm fails

True noise, multiple scattering, TTD
inefficiency, etc.

Want only best hits contributing to track
to be given to ML

Noisy Hit
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Better Noise Filtering

Initial seed: OLS to straw centers

Based on residual distribution from OLS
fit: can reject hits as noise based on
median average deviation (MAD)

Takes χ2
red of this track from 12.2 → 0.8!

Noisy Hit Rejected!
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Summary

Machine learning is proving incredibly valuable in MUSE scattered particle tracking

Enhancing the left-right ambiguity and noise filtering will only make our tracking stronger

More improvements in both regards on the way!
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