May 15 – 17, 2024
Center for Frontiers in Nuclear Science, Stony Brook University
America/New_York timezone

Non-perturbative Collins-Soper kernel from a Coulomb-gauge-fixed quasi-TMD with chiral fermions

May 15, 2024, 3:00 PM
30m
Center for Frontiers in Nuclear Science, Stony Brook University

Center for Frontiers in Nuclear Science, Stony Brook University

Department of Physics and Astronomy Stony Brook University Stony Brook, NY 11794-3800

Speaker

Xiang Gao

Description

We present the first lattice QCD calculation of the rapidity anomalous dimension of transverse-momentum-dependent distributions (TMDs), i.e. the Collins-Soper (CS) kernel, employing the recently proposed Coulomb-gauge-fixed quasi-TMD formalism as well as a chiral-symmetry-preserving lattice discretization. This unitary lattice calculation is conducted using the domain wall fermion discretization scheme, a fine lattice spacing of approximately 0.08 fm, and physical values light and strange quark masses. The CS kernel is determined analyzing the ratios of pion quasi-TMD wave functions (quasi-TMDWFs) at next-to-leading logarithmic (NLL) perturbative accuracy. We observe significantly slower signal decay with increasing quark separations compared to the established gauge-invariant method with a staple-shaped Wilson line. This enables us to determine the CS kernel at large nonperturbative transverse separations and find its near-linear dependence on the latter. Our result is consistent with the recent lattice calculation using gauge-invariant quasi-TMDWFs, and agrees with various recent phenomenological parametrizations of experimental data.

Author

Presentation materials